APO Members' Need and Readiness for Climate-Smart Agriculture Technologies

The Asian Productivity Organization (APO) is an intergovernmental organization that promotes productivity as a key enabler for socioeconomic development and organizational and enterprise growth. It promotes productivity improvement tools, techniques, and methodologies; supports the National Productivity Organizations of its members; conducts research on productivity trends; and disseminates productivity information, analyses, and data. The APO was established in 1961 and comprises 21 members.

APO Members

Bangladesh, Cambodia, Republic of China, Fiji, Hong Kong, India, Indonesia, Islamic Republic of Iran, Japan, Republic of Korea, Lao PDR, Malaysia, Mongolia, Nepal, Pakistan, Philippines, Singapore, Sri Lanka, Thailand, Turkiye, and Vietnam.

APO MEMBERS' NEED AND READINESS FOR CLIMATE-SMART AGRICULTURE TECHNOLOGIES

SEPTEMBER 2024 ASIAN PRODUCTIVITY ORGANIZATION

APO Members' Need and Readiness for Climate-Smart Agriculture Technologies

This report is an output of the need and readiness survey, supported by the Asian Productivity Organization (APO) and conducted by the Center of Excellence (COE) on Climate-smart Agriculture (CSA) with the participation of 8 national resource persons from 8 APO member economies: Bangladesh, India, Indonesia, Pakistan, the Philippines, the ROC, the ROK, and Thailand. The views expressed in this report are those of the resource persons affiliated with the COE on CSA and 8 national resource persons as an expert and do not necessarily reflect the views of each member economy.

First edition published in Japan by the Asian Productivity Organization 1-24-1 Hongo, Bunkyo Tokyo 113-0033, Japan www.apo-tokyo.org

© 2024 Asian Productivity Organization

The views expressed in this publication do not necessarily reflect the official views of the Asian Productivity Organization (APO) or any APO member.

All rights reserved. None of the contents of this publication may be used, reproduced, stored, or transferred in any form or by any means for commercial purposes without prior written permission from the APO.

Designed by BM Nxt

CONTENTS

FOREWORD	V
INTRODUCTION	1
BACKGROUND	2
The Need for CSA	2
The APO-COE on CSA	2
The Need and Readiness Survey	2
Timeline of Major Activities	3
Assignment of Chief Resource Person	4
Preparation for the First Survey	4
First Coordination Meeting of National Resource Persons and First Survey:	4
International Conference on Climate-smart Agriculture and Second Survey	4
Third Survey	5
Second Coordination Meeting of National Resource Persons and Report Preparation	5
OUTLINE OF THE NEED AND READINESS SURVEY	9
Survey Objectives	9
Survey Targets	9
Survey Method and Items	10
First Survey	10
Second Survey	14
Third Survey	14
SURVEY RESULTS	15
Results of First and Second Surveys	15
GHG Emissions from Agriculture in Eight Member Economies	15
Government Policies for Methane Emission Reductions in Eight Member Economies	17
Government Policies for Carbon Sequestration in Eight Member Economies	18
Government Policies to Support Agro-meteorological Data Systems in	
Eight Member Economies	19
Carbon Credit Trading and Emission Reduction Program for the Agricultural Sector	21
Participation in Clean Development Mechanism	22
Common features	23
Distinctive Features	23
Participation in Verified Carbon Standard	24
Participation in Gold Standard	25
Participation in Puro Earth	26
Participation in JCM and Climate Protection and Carbon Offset	26
Availability of MRV and GHG Validation and Verification Body	26
Calculating and Reporting Methane Emission Reductions from Rice	20
Cultivation by Water Management Mothodology for Calculating and Reporting Carbon Stock in Agricultural Spile	29
Methodology for Calculating and Reporting Carbon Stock in Agricultural Soils	22
by Biochar Application	32 24
Need and Readiness for Implementing Soil Carbon Sequestration Visualization Tool	34

Need and Readiness for Implementing Agro-meteorological Grid Square Data System	36
Key Stakeholders in CSA and Their Efforts	39
Summary of First and Second Survey Results	48
Results of the Third Survey	48
Summary of the Third Survey Results	53
PILOT PROJECT IN 2024	54
Target CSA Technology and Target Member Economy for a Pilot Project in 2024	54
Goal of the Pilot Project in 2024 in Thailand and Planned Activities of the COE on CSA	54
REFERENCES	56
BIBLIOGRAPHY	57
APPENDIX	60
ABBREVIATION AND ACRONYMS	256
LIST OF TABLES	258
LIST OF FIGURES	259
LIST OF CONTRIBUTORS	260

FOREWORD

In the face of escalating climate challenges, the agricultural sector stands at a critical juncture. The dual pressures of mitigating greenhouse gas (GHG) emissions and adapting to the adverse impacts of climate change necessitate innovative, sustainable approaches. The concept of climate-smart agriculture (CSA), introduced by the UN Food and Agriculture Organization (FAO) in 2010, embodies a comprehensive strategy to address these challenges by enhancing productivity, fostering resilience, and reducing emissions.

This publication, *APO Members' Need and Readiness for Climate-smart Agriculture Technologies*, is a testament to the efforts of the APO through the Center of Excellence (COE) on CSA to foster sustainable, innovative agricultural practices. Since its inception in April 2023, the COE has diligently pursued its mission to develop and disseminate cutting-edge CSA technologies and transform agricultural sectors throughout APO member economies. The publication encapsulates the findings of a need and readiness survey conducted in the eight APO member economies Bangladesh, the Republic of China, India, Indonesia, the Republic of Korea (ROK), Pakistan, the Philippines, and Thailand. The survey, conducted from September to December 2023, aimed to identify priority CSA technologies and assess the readiness of those economies to implement them.

The report is structured into four comprehensive chapters. The first chapter provides a background to the necessity for CSA and the role of the APO and COE on CSA. The second chapter outlines the objectives, targets, methods, and items of the need and readiness survey. Detailed results of the three surveys conducted are presented in the third chapter. Finally, the fourth chapter focuses on the pilot project planned for 2024, highlighting target CSA technology and member economies, along with the planned activities.

The insights from this publication are pivotal for guiding future CSA initiatives and ensuring that the selected technologies align with the specific needs and capacities of APO member economies. By fostering knowledge exchanges and capacity building, this report paves the way for a more resilient, sustainable agricultural sector in the Asia-Pacific region. The three follow-up projects resulting from the publication will collectively strengthen regional resilience to climate change and foster sustainable agricultural development throughout the Asia-Pacific. Through these initiatives, COE on CSA researchers will share and integrate cutting-edge agricultural technologies, with Thailand as the pilot project site for the introduction and replication of CSA technologies in 2024 and 2025 to ensure tailored implementation of soil carbon sequestration and carbon credit methodologies. As we tackle the challenges of climate change and work toward better agricultural practices, the findings in this report will be invaluable. I extend my sincere thanks to all who contributed to this endeavor, from the participating members to the dedicated team at the COE on CSA. Together, we are taking meaningful steps toward a sustainable future for agriculture in the Asia-Pacific.

Dr. Indra Pradana Singawinata Secretary-General Asian Productivity Organization Tokyo

INTRODUCTION

As part of the efforts to reduce greenhouse gas (GHG) emissions and enhance productivity in the agricultural sector in the Asia–Pacific region, the APO designated the National Agriculture and Food Research Organization (NARO) of Japan as its new center of excellence (COE) on Climate-smart Agriculture (CSA) on 10 March 2023. The COE on CSA, implemented by the NARO, started its activities from April 2023. The COE is expected to transfer the CSA technologies it has developed and provide the related knowledge for reducing GHG emission and productivity improvement in the agricultural sector across APO member economies.

The COE on CSA had planned to transfer the CSA technologies it has developed through annual pilot projects in member economies starting from 2024. To transfer the technologies, there was a need to understand which of the developed technologies were needed on priority and what was the readiness for implementing those technologies in APO member economies. For this purpose, the COE on CSA conducted three surveys from September 2023 to December 2023 in eight APO member economies that responded to the request for participation. These were: Bangladesh, India, Indonesia, the Republic of China (ROC), the Republic of Korea (ROK), Pakistan, the Philippines, and Thailand. The findings of the surveys were used as the reference for selecting the target CSA technologies and target member economies for a pilot project in 2024.

This report is divided into four chapters: Background; Outline of Need and Readiness Survey; Survey Results; and Pilot Project in 2024. In the first chapter, the background of the survey is overviewed. In the second chapter, objectives, targets, method, items, and the timeline of the survey are described. The third chapter presents the results of the three surveys. The fourth chapter focuses the target CSA technologies and the target member economies for a pilot project in 2024, along with the planned activities.

BACKGROUND

The Need for CSA

Agriculture is highly vulnerable to climate change, as it depends on weather and climatic conditions. Increases in temperatures, changes in precipitation patterns as well as frequent and/or severe extreme weather events may negatively affect agricultural productivity, eventually leading to food insecurity. Adaptation to climate change in agriculture is essential for mitigating the adverse impacts of climate change. At the same time, agriculture is also a major contributor to climate change due to its significant GHG emissions. According to the Food and Agriculture Organization (FAO), agriculture emitted 7,400,000 giga grams of carbon dioxide equivalent (GgCO2eq.) of GHG in 2020, accounting for 14% of total anthropogenic GHG emissions [1]. Mitigation of GHG emissions in agriculture is crucial to achieve the goal of limiting the rise in global average temperature to 1.5°C and reducing the rate of climate change.

In response to this dual challenge, the FAO launched the concept of CSA in 2010. CSA is a set of practices and technologies that pursue the objectives of increasing productivity, adapting to climate change, and reducing GHG emissions. There is a need to move toward CSA to promote sustainable agriculture and food security.

The APO-COE on CSA

The APO [2] started the COE program in 2009 with the aim of enhancing productivity in all sectors, including agriculture, in its member economies. The APO-COE program designates an institution in a member economy, having world-class competency and best practices in a specific area and contributing to productivity as a COE. The APO-COE program promotes the adoption of best practices of one member economy by other member economies while adapting them to suit local contexts.

As part of its efforts to enhance productivity and reduce GHG emissions in the agricultural sector in member economies, the APO announced the designation of the NARO of Japan as the COE on CSA on 10 March 2023. This COE on CSA started its activities in April 2023 and received a plate in the 65th session of the APO Governing Body Meeting (GBM) in Ulaanbaatar, Mongolia, on 25 May 2023. The COE aimed to promote and implement CSA-related activities, such as pilot projects, conferences, workshops, and on-site training, to contribute to the improvement of productivity and the reduction of GHG emissions in the agricultural sector in member economies.

The Need and Readiness Survey

The COE on CSA had planned to implement annual pilot projects in member economies from 2024 to transfer the following CSA technologies that the NARO has developed:

- water management technologies that can reduce methane emissions from paddy fields (e.g., prolong mid-season drainage);
- soil carbon sequestration technologies (e.g., biochar production and application);

- soil carbon sequestration visualization tool;
- carbon credit methodologies (e.g., methodology for calculating and reporting methane emission reductions from rice cultivation by water management practice; methodology for calculating and reporting carbon stock in agricultural soils by biochar application); and
- agro-meteorological grid square data system.

Selecting target CSA technologies and member economies was crucial for implementing a pilot project from 2024. To do this, the COE on CSA conducted a survey in member economies to find out which CSA technologies were needed on priority and how ready the member economies were to implement those technologies. The survey was necessary to ensure an objective and appropriate selection of the target CSA technology and the target member economy for a pilot project in 2024.

Timeline of Major Activities

The timeline of the major activities of the survey is shown in Figure 1.

FIGURE 1

TIMELINE OF THE MAJOR SURVEY ACTIVITIES.

	2023							2024			
	May	June	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	March
Assign a chief resource person for the survey											
Design and prepare the first survey											
Define survey targets and send request											
Assign eight national resource persons											
First coordination meeting of national resource persons											
Conduct the first survey											
Report preliminary results of the first survey											
Conduct the second survey											
Prepare and conduct the third survey											
Second coordination meeting of national resource persons											
Prepare and submit report to APO Secretariat											

Assignment of Chief Resource Person

- The COE on CSA, in the period from May 2023 to June 2023, nominated a chief resource person to oversee the entire survey.
- The APO Secretariat issued the Letter of Assignment to the nominated chief resource person.

Preparation for the First Survey

- The chief resource person and other resource persons affiliated with the COE on CSA prepared the questionnaire for the first survey.
- The chief resource person and other resource persons affiliated with the COE on CSA identified the target member economies for the survey and sent requests to potential national resource persons in 11 member economies for their participation in the survey via the APO Secretariat and the NPO in each member economy.
- After the national resource persons had been nominated from eight member economies, the APO Secretariat issued the Letter of Assignment to all national resource persons.
- These activities were carried out from May 2023 to August 2023.

First Coordination Meeting of National Resource Persons and First Survey:

- The first coordination meeting of national resource persons was held on 8 September 2023 by the chief resource person, involving other resource persons affiliated with the COE on CSA and the APO Secretariat, to explain and discuss methods and items for the first survey.
- The chief resource person and other resource persons affiliated with the COE modified the questionnaire based on the discussion in the first coordination meeting and sent the final questionnaire back to the eight national resource persons.
- The first survey was conducted from 12 September 2023 to 20 October 2023.

International Conference on Climate-smart Agriculture and Second Survey

- To share knowledge and experiences on CSA technologies, to present the preliminary results of the first survey, and to gather additional information from 8 member economies, the COE on CSA hosted the International Conference on CSA during 8–10 November 2023 in Tsukuba, Japan (see Tables 1, 2, and 3).
- On 8 November 2023, several CSA technologies were introduced by the researchers from the NARO and the Japan International Research Center for Agricultural Sciences (JIRCAS). The chief resource person also presented the preliminary results of the first survey to the eight national resource persons.
- On 9 November 2023, a workshop on "Information Services related to Climate Change and Soil Carbon Sequestration Visualization Tool" was held, and presentations on the current situation regarding climate change mitigation and adaptation were made by the eight national resource persons.

• On 10 November 2023, the introduction of the NARO's Agriculture Research Hall and Genebank, lectures on paddy water management, and a demonstration of methane measurement using the closed chamber method were made.

Third Survey

• The chief resource person and other resource persons affiliated with the COE on CSA prepared and conducted the third survey from 21 November 2023 to 5 December 2023.

Second Coordination Meeting of National Resource Persons and Report Preparation

- The second coordination meeting of national resource persons was held on 9 January 2024 by the chief resource person and other resource persons affiliated with the COE, to report the results of the third survey, the target CSA technology, and the target APO member economy for a pilot project in 2024.
- The chief resource person and other resource persons affiliated with the COE prepared the report and submitted it to the APO Secretariat in March 2024.

TABLE 1

SCHEDULE OF THE FIRST DAY OF THE INTERNATIONAL CONFERENCE ON CLIMATE-SMART AGRICULTURE.

International Conference on CSA 8–10 November 2023 (Hybrid)							
Time	Agenda	Speaker					
•	day, 8 November 2023 ational Congress Center (Conference Room 406,	Tsukuba, Japan)					
12:30-13:00	Onsite and online registration						
13:00-13:15	Opening remarks: National Agriculture and Food Research Organization (NARO)	Dr. Kyuma Kazuo, President, NARO					
13.00-13.13	The APO	Dr. Indra Pradana Singawinata, Secretary–General, APO					
13:15–13:45	Keynote speech: Global situations on GHG emissions and Center of Excellence on Climate-smart Agriculture	Dr. Morita Satoshi, Director, NARO Development Strategy Center (NDSC)					
13:45-13:55	Break						
13:55–14:00	Introduction of the APO Centers of Excellence Program	Gozde Bosnali, Program Officer, In- country Programs Division, APO					
	Conference Session: Climate-smart Technol	logies					
	Topic 1 Survey on the Current Status of Crediting GHG Reductions and Absorption in the Agricultural Sector	Dr. Kuwahata Kenya, Senior Principal Scientist, NDSC					
14:00–15:00	Topic 2 Application of Prolonged Mid-season Drainage (MD) to Paddy Fields	Dr. Sudo Shigeto, Leader, NARO Institute for Agro-Environmental Sciences (NIAES)					
	Topic 3 Application of Alternate Wetting and Drying (AWD) to Paddy Fields	Dr. Minamikawa Kazunori, Senior Researcher, Japan International Research Center for Agricultural Sciences (JIRCAS)					
	Topic 4 Application of Biochar	Dr. Kishimoto Ayaka, Principal Scientist, NIAES					

(Continued on next page)

(Continued from the previous page)

International Conference on CSA 8–10 November 2023 (Hybrid)							
Time	Agenda	Speaker					
15:00-15:15	Break						
	Conference Session: Climate-smart Techno	logies (continued)					
	Topic 5 Development and Application of a Soil Carbon Sequestration Visualization Tool	Dr. Fumoto Tamon, Principal Scientist, NIAES					
15:15–16:15	Topic 6 Development and Application of the 1-km Mesh Agricultural Weather Data System	Ms. Sasaki Kaori, Principal Scientist, NIAE					
	Topic 7 Predicting Rice Grain Yield Using Normalized Difference Vegetation Index from UAV	Dr. Nakano Hiroshi, Senior Principal Scientist, NARO Central Region, Agricultural Research Center (NARO CARC)					
	Topic 8 GHG Emission Reduction Technology for Livestock Waste Treatment Processes	Dr. Fukumoto Yasuyuki, Leader, NARO Institute of Livestock and Grassland Science (NILGS)					
16:15–16:35	Preliminary Results of the Need and Readiness Assessment Survey on CSA	Dr. Hasegawa Toshihiro, Executive Scientist, NIAES					
16:35–16:50	Knowledge Sharing from the International Workshop on Developing Low-carbon Farming for Smallholders in the Asia-Pacific Region in the ROC	Dr. Lurhathaiopath Puangkaew, Senior Scientist, Central Region Agricultural Research Center (CARC), former NARO Development Strategy Center (NDSC)					

TABLE 2

SCHEDULE OF THE SECOND DAY OF THE INTERNATIONAL CONFERENCE ON CLIMATE-SMART AGRICULTURE.

Time	Agenda	Speaker
Day 2: Thursd NIAES Confer Tsukuba, Japa		
9:45–10:00	Registration	
10:00–10:20	 Workshop: Demonstration and Application of the Information Services related to Climate Change Topic 1 Demonstration of the Development and Application of the 1-km Mesh Agricultural Weather Data System 	Dr. Ohno Hiroyuki and Sasaki Kaori, Principal Scientists, NIAES
10:20–10:40	Topic 2Application of Climate information to theYield Forecasting in the Asian Context	Dr. lizumi Toshichika, Principal Scientist, NIAES

(Continued on next page)

(Continued from the previous page)

Time	Agenda	Speaker
10:40–11:00	Topic 3 Demonstration of the Development and Application of a Soil Carbon Sequestra- tion Visualization Tool	Dr. Fumoto Tamon, Principal Scientist, NIAES
11:00-11:15	Break	
11:15–12:00	Discussion on the Use of Climate Services and Soil Carbon Visualization Tools	
12:00-13:30	Lunch break	
13:30–14:30	Presentations by National Resource Persons on the Current Situation Regard- ing Climate Change Mitigation and Adaptation	 Dr. S.M. Mofijul Islam, Senior Scientific Officer, Soil Science Division, Bangladesh Rice Research Institute (BRRI), Bangladesh Dr. Sri Mulyani, Manager, Division of Environment Science, Agriculture Extension Center Ministry of Agriculture, Indonesia Dr. Niveta Jain (online) Principal Scientist, Division of Environment Science, Indian Agricultural Research Institute (ICAR), India Dr. Ghani Akbar, Principal Scientific Officer Climate, Energy and Water Research Institute (CEWRI), National Agricultural Research Centre (NARC), Pakistan Agricultural
14:30-14:45	Break	
14:45-15:45	Presentations by National Resource Persons on the Current Situation Regard- ing Climate Change Mitigation and Adaptation (continued)	 Dr. Eduardo Jimmy P. Quilang, Chief Science, Research Specialist, Department of Agriculture, Philippine Rice Research Institute, the Philippines Dr. Szu-Meng Wu, Professor/Director, Department of Life Science Chinese Culture University, the ROC Dr. Gilwon Kim, Academic research professor, Department of Applied Life Science, Gyeongsang National University, the ROK Dr. Theerawut Chutinanthakun, Director, Department of Agriculture, Ministry of Agriculture and Cooperatives, Thailand

Time	Agenda	Speaker
• •	, 10 November 2023 ıba Agriculture Research Hall, NARO's Gene an	bank, and JIRCAS
9:45–11:15	Visiting NARO's Tsukuba Agriculture Research Hall: Introduction of Agriculture Research Hall	Tsukamoto Ai, Senior staff, NARO Public Relations Department; Dr. Nakaya Tetsuo, Deputy Leader, NARO Institute for Rural Engineering (NIRE) Dr. Minagawa Hiroki, Principal Scientist,
Lectures on paddy water management		NIRE
11:30–12:00	Visiting Genebank	Staff of Genebank
12:00-13:00	Lunch break	
13:15–14:30	Visiting JIRCAS: Lecture on the overview of the activities in JIRCAS Visiting Alternate Wet and Dry (AWD) field	Dr. Hayashi Keiichi, Program Director, JIRCAS Dr. Uno Kenichi, Senior Researcher, JIRCAS
	with Closed Chamber for Methane Measurement	

TARIE 2

OUTLINE OF THE NEED AND READINESS SURVEY

Survey Objectives

The objectives of the survey were to find out and assess the need and readiness of APO member economies in order to select the CSA technology and the member economy for a pilot project in 2024.

Survey Targets

Survey targets were identified based on the following criteria:

- the size of cultivation area of relevant crops such as rice and sugarcane;
- the number of relevant livestock such as poultry; and
- the amount of GHG emissions from agriculture.

Among the 20 APO member economies (excluding Japan), 11 member economies (Bangladesh, India, Indonesia, Malaysia, Pakistan, Philippines, ROC, ROK, Sri Lanka, Thailand, and Vietnam) have comparatively large rice cultivation areas, number of poultries, and amount of GHG emissions from agriculture. The COE on CSA sent a request to the national productivity organizations (NPOs) of these 11 member economies for their participation in the survey via the APO Secretariat. Among these member economies, eight NPOs (Bangladesh, India, Indonesia, Pakistan, Philippines, ROC, ROK, and Thailand) responded to the request. They nominated one national resource person each, who were later approved by the APO. The COE on CSA conducted three surveys with these eight national resource persons (see Table 1 for the details).

TABLE 1

SIZE OF MAJOR AGRICULTURAL INDUSTRIES AND GHG EMISSIONS IN THE EIGHT TARGET MEMBER ECONOMIES.

	Rice		Sugarcane		Poultry		GHG emissions from agriculture	
	Year	Area (1,000 ha)	Year	Area (1,000 ha)	Year	Number (1,000 wing)	Year	Amount (GgCo2eq.)
Bangladesh	2012	11,528	2012	109	2012	288,570	2019	61,865
India	2016	43,190	2016	3,990	2012	851,810	2016	407,821
Indonesia	2017	8,188	2021	449	2017	3,538,739	2019	105,301
Pakistan	2017	2,901	2017	1,342	2006	73,648	2018	191,930
The Philippines	2021	4,805	2021	420	2012	189,332	2020	66,159
The ROC	2005	225	2019	9	2022	111,882	2021	3,231

(Continued on next page)

(Continued from the previous page)

	Rice		Sugarcane		Poultry		GHG emissions from agriculture	
	Year	Area (1,000 ha)	Year	Area (1,000 ha)	Year	Number (1,000 wing)	Year	Amount (GgCo2eq.)
The ROK	2022	776	-	-	2023	177,855	2020	21,100
Thailand	2018	11,022	2021	1,764	2021	518,642	2019	56,766
Percentage of total APO member economies, excluding Japan		84%		94%		82%		76%

Source: Agricultural statistics and other reports from each member economy. GHG emissions from agriculture do not include those from land use change.

Survey Method and Items

The COE on CSA conducted three surveys in the eight target member economies with the participation of the eight national resource persons from September 2023 to December 2023. The method and items of each survey were as detailed below.

First Survey

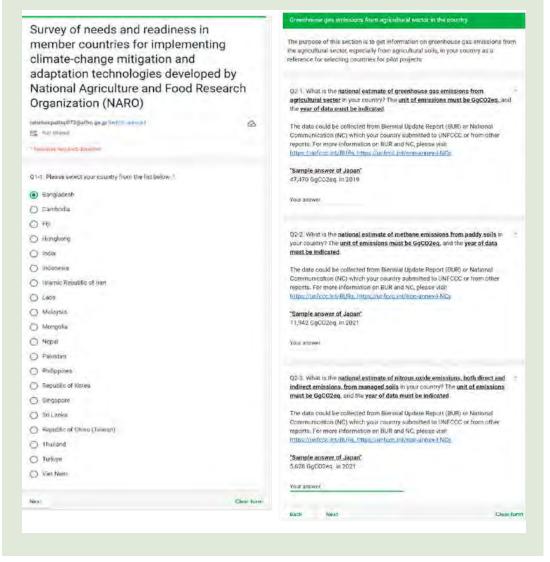
The first survey was conducted from 12 September 2023 to 20 October 2023. In the survey, the eight national resource persons from eight target member economies were requested to fill out the questionnaire using Google Forms (see Figure 2). The purpose of the surveys was to get information on GHG emissions from agricultural soils, government policies, or support measures for climate change mitigation in agriculture, including the participation in carbon credit mechanisms, need and readiness for implementing CSA technologies developed by the NARO, and key stakeholders in the CSA across the eight member economies. The questionnaire comprised 42 items across eight sections, with four types of questions (open-ended questions; single answer, multiple choices; multiple answers, multiple choices; and scale questions), as follows:

Section 1: Member Economy (1 item)

Q1. Select your member economy from the list (single answer, multiple choices).

Section 2: GHG Emissions from Agriculture in Member Economies (three items)

Purpose: To get information on GHG emissions from agriculture, methane emissions from paddy soils, and nitrous oxide emissions from managed soils, in the eight member economies.


- Q2. National estimate of GHG emissions from agricultural sector (open-ended question).
- Q3. National estimate of methane emissions from paddy soils (open-ended question).
- Q4. National estimate of nitrous oxide emissions, both direct and indirect emissions, from managed soils (open-ended question).

Section 3: Government Policies or Support Measures for Climate Change Mitigation in Agriculture in Member Economies (11 items)

Purpose: To get information on government policies or support measures for reducing GHG emissions from agriculture in the eight member economies.

FIGURE 1

THE FIRST SURVEY USING GOOGLE FORMS.

- Q5. Government policies, actions, or plans for methane emission reductions from paddy soils (open-ended question).
- Q6. Government policies, actions, or plans for carbon sequestration in agricultural soils (open-ended question).
- Q7. Availability of national carbon credit trading mechanisms and voluntary emission reduction programs (open-ended question).
- Q8. Types of agricultural projects registered in the national carbon credit trading mechanisms and voluntary emission reduction programs (multiple answers, multiple choices).
- Q9. Types of agricultural projects registered in the Clean Development Mechanism (CDM) (multiple answers, multiple choices).

- Q10. Types of agricultural projects registered in the Verified Carbon Standard (VCS) (multiple answers, multiple choices).
- Q11. Types of agricultural projects registered in the Gold Standard (GS) (multiple answers, multiple choices).
- Q12. Participation in the Puro Earth (single answer, multiple choices).
- Q13. Participation in Joint Crediting Mechanism (JCM) and/or Climate Protection and Carbon Offset (Klik) (single answer, multiple choices).
- Q14. Availability of Monitoring, Reporting and Verification (MRV) of GHG emissions (single answer, multiple choices).
- Q15. Availability of GHG validation and verification bodies (single answer, multiple choices).

Section 4: Methodology for Calculating and Reporting Methane Emission Reductions from Rice Cultivation (six items)

Purpose: To understand the need and readiness of the eight member economies for implementing the methodology for calculating and reporting methane emission reductions from rice cultivation with water management.

- Q16. Importance of the methane emission reductions from paddy soils (scale question).
- Q17. Importance of the methodology for calculating and reporting methane emission reductions from rice cultivation by water management practice (scale question).
- Q18. Availability of an estimate of the potential methane emission reductions from paddy soils (single answer, multiple choices).
- Q19. Types of technologies practiced or promoted to reduce methane emissions from paddy soils (multiple answers, multiple choices).
- Q20. Availability of shared or approved methodologies for calculating and reporting methane emission reductions from paddy soils (open-ended question).
- Q21. Potential area of paddy fields that can implement water management practices for reducing methane emissions from paddy soils (open-ended question).

Section 5: Methodology for Calculating and Reporting Carbon Stock in Agricultural Soils (six items) Purpose: To understand the need and readiness of the eight member economies for implementing methodology for calculating and reporting carbon stock in agricultural soils with biochar application.

Q22. Importance of the conservation or sequestration of carbon in agricultural soils (scale question).

- Q23. Importance of the methodology for calculating and reporting carbon stock in agricultural soils by biochar application (scale question).
- Q24. Potential of biochar as a soil amendment for carbon sequestration in agricultural soils (open-ended question).
- Q25. Potential organic materials from the agricultural sector that can be used to produce biochar for carbon sequestration in agricultural soils (multiple answers, multiple choices).
- Q26. Estimated quantity of the potential organic materials mentioned above (open-ended question).
- Q27. Competing uses and estimated utilization rate of the potential organic materials mentioned above (open-ended question).

Section 6: Soil Carbon Sequestration Visualization Tool (six items)

Purpose: To understand the need and readiness of the eight member economies for implementing the Soil Carbon Sequestration Visualization Tool.

- Q28. Importance of Soil Carbon Sequestration Visualization Tool (scale question).
- Q29. Availability of soil map (single answer, multiple choices).
- Q30. Available data from soil map (multiple answers, multiple choices).
- Q31. Availability of activity data related to organic matter (such as crop residue and compost) inputs (single answer, multiple choices).
- Q32. Availability of long-term continuous experiment data of organic matter inputs (single answer, multiple choices).
- Q33. Availability of long-term soil carbon observation data (single answer, multiple choices).

Section 7: Agro-meteorological Grid Square Data System (five items)

Purpose: To understand the need and readiness of the eight member economies for implementing the Agro-meteorological Grid Square Data System.

- Q34. Importance of grid-based Agro-meteorological Data System (scale question).
- Q35. Government policies or plans to support Agro-meteorological Data System (openended question).
- Q36. Availability of grid-based Agro-meteorological Data System (open-ended question).
- Q37. Number of weather stations (open-ended question).
- Q38. Available weather elements from the weather stations (open-ended question).

Section 8: Key Stakeholders in CSA and Their Efforts (four items)

Purpose: To know the key stakeholders in CSA in eight member economies for possible collaboration.

- Q39. Key government agencies in CSA and their efforts for climate change adaptation and mitigation in agriculture (open-ended question).
- Q40. Key private enterprises in CSA and their efforts for climate change adaptation and mitigation in agriculture (open-ended question).
- Q41. Key universities or research institutes in CSA and their efforts for climate change adaptation and mitigation in agriculture (open-ended question).
- Q42. Key international organizations in CSA and their efforts for climate change adaptation and mitigation in agriculture (open-ended question).

Second Survey

At the International Conference on Climate-smart Agriculture held by the APO, in collaboration with the NARO, from 8 to 10 November 2023, eight national resource persons from eight member economies were requested to make 10-minute presentations on the current situation of climate-change adaptation and mitigation as well as the major barriers and potential enablers to enhance the climate action in agriculture in their respective member economies. The COE on CSA was able to get additional information from the national resource persons. So, this presentation can be regarded as a second survey.

Third Survey

The third survey was conducted via e-mail from 21 November 2023 to 5 December 2023. In this survey, the national resource persons from eight member economies were requested to fill out the "Priority Sheet" with priority CSA technologies and specific topic, possible collaboration with the COE on CSA, and challenges to be addressed or overcome, for pilot projects. All national resource persons were also asked to provide information on related projects underway (see Figure 2).

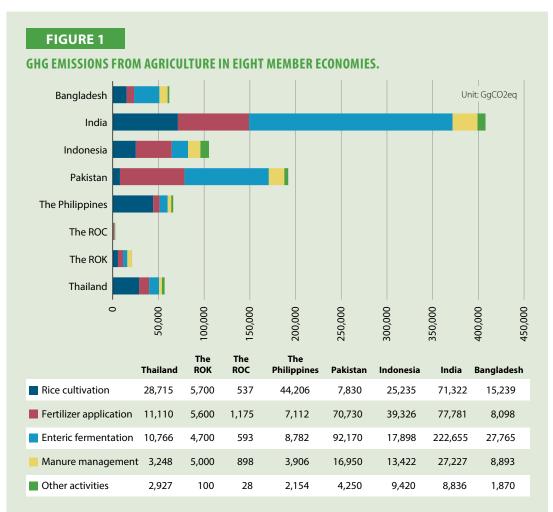
FIGURE 2

THE SECONDARY SURVEY USING PRIORITY SHEET.

Priorities on Climate-smart Agriculture Technologies for pilot projects

Please fill out the form below to specify your preference.

Member economy (


CSA technology	Specific topic for possible collaboration with the COE on CSA	Challenges to be addressed or overcome	Related projects currently underway or planned if any
		CSA collaboration with the	CSA collaboration with the Challenges to be

SURVEY RESULTS

Results of First and Second Surveys

GHG Emissions from Agriculture in Eight Member Economies

Figure 1 shows the recent estimates of total GHG emissions from agriculture, including a breakdown by source, in the eight target member economies. GHG emissions due to land use change are not included in the figure.

Source: Based on results of the first and second surveys.

Note: Data of Bangladesh and the ROC represent estimates for 2021; data of the Philippines and the ROK represent estimates for 2020; data of Indonesia and Thailand represent estimates for 2019; data of Pakistan represent estimates for 2018; and data of India represent estimates for 2016.

Bangladesh

Among the eight member economies, Bangladesh is the fifth-largest producer of GHG emissions from agriculture. In 2019, GHG emission from agriculture in Bangladesh was estimated to be 61,865 GgCO2eq. The largest source of GHG emissions from agriculture in Bangladesh was enteric fermentation (accounting for 45%); followed by rice cultivation (25%); manure management

(14%); application of N-based fertilizers to agricultural soils (13%); and other activities such as urea application (3%).

The ROC

Among the eight member economies, the ROC is the smallest producer of GHG emissions from agriculture. In 2021, GHG emission from agriculture in the ROC was 3,231 GgCO2eq. The largest source of GHG emissions from agriculture was application of N-based fertilizers to agricultural soils (accounting for 36%); followed by manure management (28%); enteric fermentation (18%); rice cultivation (17%); and other activities (1%).

India

Among the eight member economies, India is the largest producer of GHG emissions from agriculture. In 2016, the estimated GHG emission from agriculture in India was 407,821 GgCO2eq. The largest source of GHG emissions from agriculture was enteric fermentation (55%); followed by application of N-based fertilizers to agricultural soils (19%); rice cultivation (17%); manure management (7%); and other activities such as field burning of agriculture residues (3%).

Indonesia

Indonesia is the third-largest producer of GHG emissions from agriculture among the eight member economies. In 2019, the estimated GHG emission from agriculture in Indonesia was 105,301 GgCO2eq. The largest source of GHG emissions from agriculture was application of N-based fertilizers (accounting for 37%); followed by rice cultivation (24%); enteric fermentation (17%); manure management (13%); and other activities such as urea and lime application (9%).

Pakistan

Pakistan is the second-largest producer of GHG emissions from agriculture among the eight member economies. In 2018, Pakistan's agriculture emitted 191,930 GgCO2eq. of GHG into the atmosphere. The largest source of GHG emissions from agriculture was enteric fermentation (accounting for 48%); followed by application of N-based fertilizers to agricultural soils (37%); manure management (9%); rice cultivation (4%); and other activities (2%).

The Philippines

The Philippines is the fourth-largest producer of GHG emissions from agriculture among the eight member economies. In 2020, Philippine agriculture emitted 66,159 GgCO2eq. of GHG into the atmosphere. The largest source of GHG emissions from agriculture was rice cultivation (accounting for 67%); followed by enteric fermentation (13%); application of N-based fertilizers to agricultural soils (11%); manure management (6%); and other activities (3%).

The ROK

The ROK is the seventh-largest producer of GHG emissions from agriculture among the eight member economies. In 2020, GHG emission from agriculture in the ROK was estimated to be 21,100 GgCO2eq. The largest source of GHG emissions from agriculture was rice cultivation (accounting for 27%); followed by application of N-based fertilizers to agricultural soils (26.5%); manure management (24%); enteric fermentation (22%); and other activities (0.5%).

Thailand

Thailand is the sixth-largest producer of GHG emissions from agriculture among the eight member economies. In 2019, Thai agriculture emitted 56,766 GgCO2eq. of GHG into the atmosphere. The

largest source of GHG emissions from agriculture was rice cultivation (accounting for 51%); followed by application of N-based fertilizers to agricultural soils (20%); enteric fermentation (19%); manure management (6%); and other activities (5%) such as field burning of agriculture residues and application of urea and lime.

Government Policies for Methane Emission Reductions in Eight Member Economies

The summary of government policies or support measures for methane emission reduction in the eight member economies is as follows:

Bangladesh

The government aims to reduce methane emissions from paddy soils by 17% by 2030 by promoting alternate wetting and drying (AWD), developing climate-smart rice varieties, implementing balanced fertilization, and distributing urea deep placement technology.

The ROC

The ROC's Department of Agriculture aims to achieve net-zero agricultural emissions by 2040 through four main axes of reduction, increase of sinks, circulation, and green trend. There are three low-carbon production models for methane emission reductions: (1) reduce the amount of chemical fertilizers and use them accurately; (2) promote organic and friendly agriculture; and (3) adjust paddy field irrigation mode.

India

Methane emissions from Indian rice paddies have been almost stable for the last two decades. However, due to high water requirements of paddy crops, the Government of India has initiated a crop diversification program under the National Mission for Sustainable Agriculture (NMSA) to reduce water requirements and promote alternate crop cultivation. As part of the National Food Security Mission (NFSM), the System of Rice Intensification (SRI) and 'direct seeded rice' are being implemented to increase productivity and reduce methane emissions from paddy soils.

Indonesia

Indonesia's Nationally Determined Contribution (NDC) aims to reduce GHG emissions by 29% unconditionally and 41% conditionally by 2030. Mitigation actions in the NDC for the agricultural sector include the use of low-emission crops, implementation of water-efficient concepts in water management, use of organic fertilizers, manure management for biogas, and feed supplements for the cattle. For ongoing actions, there is a program called Strategic Irrigation Modernization and Urgent Rehabilitation Project (SIMURP) by the Ministry of Agriculture, using CSA technologies such as AWD/intermittent and Jajar Legowo (Spacing-Plant) rice cultivation systems to reduce methane emissions from paddy soils.

Pakistan

There are several policies in Pakistan, such as National Climate Change Policy 2012 (updated in 2021); Pakistan Climate Change Act 2017; Sindh Agriculture Policy 2018; and National Food Security Policy 2018, that recommended the reduction of GHG emissions from agriculture. Pakistan is also currently implementing some projects as part of the national public sector development program to introduce machinery, tillage, irrigation, and field management practices for enhancing the productivity of rice. These may also reduce methane emissions from paddy fields and control rice straw burning at field.

SURVEY RESULTS

The Philippines

The country's comprehensive efforts to mitigate methane emissions from paddy soil are geared for improving access to climate finance, promoting technology development and transfer, and strengthening capacity-building initiatives embedded in different programs of the Department of Agriculture (DA).

The ROK

The government is implementing a soil improvement project using silicate fertilizer to reduce methane emissions and is developing various emission factors to accurately measure methane emissions from paddy soils. The government is also promoting organic-friendly farming, low-till farming, organic fertilizer application, use of highly stable organic-matter fertilizers and soil microorganisms, circulation of surplus agricultural materials, and establishment of effective carbon pricing and trading systems.

Thailand

There is a project called "Thai rice: Strengthening Climate-smart Rice Farming (Thai Rice GCF)" under the Rice Department, supported by Green Climate Fund (GCF) and Gesellschaft für Internationale Zusammenarbeit (GIZ). This project aims to promote low-emission and climate-resilient rice farming, supporting 250,000 farmers across 21 provinces from 2023 to 2028. The CSA technologies included in this project are laser-land leveling; AWD; site-specific nutrient management; straw/stubble management; integrated pest management (IPM); climate-smart rice varieties, direct seeded rice; crop diversification, including perennial plants and trees; intercropping; and agromet advisory support. The Ministry of Agriculture and Cooperatives (MOAC) of Thailand announced the "Agricultural Action Plan for climate change 2023–2027" to implement various countermeasures to cope with the effects of climate change including the introduction of CSA.

Government Policies for Carbon Sequestration in Eight Member Economies

A summary of government policies or support measures for carbon sequestration in the eight member economies is as follows:

Bangladesh

Bangladesh has a low level of soil organic carbon with an average of 1% nationwide. Bangladesh has conducted long-term experiments of balanced fertilization, organic amendment, and conservation agriculture study to investigate the increase in soil organic carbon. An increased soil organic carbon content of 10–15% over baseline soil has been observed in long-term experiments with balanced fertilization and organic amendment. The conservation agriculture study has revealed 5–10% increase in soil organic carbon over the initial soil.

The ROC

The Ministry of Agriculture and the Ministry of Science and Technology collaborate on the "Carbon Negative Technology Working Circle" to reduce carbon dioxide emissions through carbon negative technologies such as increasing natural carbon sinks. The technical group headed by the Ministry of Agriculture evaluates the carbon sinks that can be contributed by natural environments such as forests, soils, and oceans.

India

Indian soils are low in soil organic carbon in the topsoil layer (20cm) and require carbon sequestration rate of 23–28 per mille, compared with the global requirement of 4 per mille. Long-

term experiments have shown that balanced fertilization and application of organic residues can increase soil organic carbon content by 10–20%. Effective utilization of organic resources, enhanced composting and farmyard manure (FYM) management, along with conservation agriculture or resource conservation technologies, can enhance soil organic carbon in Indian soils.

Indonesia

The agricultural sector is just drafting the regulation of a result-based payment (RBP) for economic carbon implementation. For ongoing action, in the SIMURP Program, technologies that support carbon reduction in the agricultural sector, such as reducing the use of chemical fertilizers and adding more organic fertilizers (balanced fertilization), have been employed.

Pakistan

The Climate Change Policy in Pakistan recommends carbon sequestration in agriculture, agroforestry, mangroves, sea grasses, and tidal marshes. Initiatives such as Ten Billion Tree Tsunami; Miyawaki Forest; REDD+ Indus Delta (2019–30 delta blue carbon phase I); and restoring mangrove forest are underway. However, there is a lack of resources, awareness, and national/ international support for stimulating carbon sequestration projects.

The Philippines

The Organic Agriculture (OA) Act, enacted by the Republic Act 10068, promotes organic farming in the Philippines. It aims to improve farm productivity, reduce natural resource depletion, and enhance health benefits for farmers and consumers. The Act further provides for: labelling requirements; retailing of organic produce; research, development, and extension (RDE); creation of organic agriculture RDE networks; incentives; penalties; etc.

The ROK

The projects include biochar support project, carbon direct payment system, conversion of rice fields into upland areas, and methane emission reductions feed for cattle.

Thailand

Thailand's National Climate Change Policy Committee, chaired by the Deputy Prime Minister, is focusing on the following topics: fertilizer usage according to the soil analysis value; study on effects of soil, fertilizer, and water management in maize, sugarcane, cassava, soybean, and mung bean production systems on soil quality changes and GHG emissions; and study of effects of cover crops on beneficial soil microorganisms to increase crop production potential.

Government Policies to Support Agro-meteorological Data Systems in Eight Member Economies

A summary of government policies or plans to support agro-meteorological data systems in the eight member economies is as follows:

Bangladesh

The Government of Bangladesh is trying to formulate agro-meteorological policies that support the agro-meteorological data system.

The ROC

With the support of the Ministry of Science and Technology Program and the National High-Speed Network and Computing Center, the windy webpage (https://pm25.colife.org.tw), which currently

has the highest resolution of 1 km in the ROC, was constructed. The system was developed and maintained by professors of National Chung Hsing University and National Central University. It provides air pollution forecasts for the next four days and simulation results of wind fields and rainfall fields with a resolution of 1 km across the region.

India

India Meteorological Department (IMD) records the agro-meteorological data in the country through 200 Agro Automatic Weather Station (AWS) installed across the country. The data is used for providing agro advisories by the Indian Council of Agricultural Research (ICAR), along with the IMD. Recently, a Weather Information Network and Data System (WINDS) portal has been launched by the Ministry of Agriculture and Farmers Welfare to augment the weather data collection system in the country in terms of adequacy of network, data collection, standardization, hosting and dissemination through coordinated efforts of the IMD and different states.

Indonesia

In Indonesia, there is a web-based Integrated Cropping Calendar Information System called "SI KATAM Terpadu" that provides planting time guidelines, and fertilizer and variety recommendations for rice, maize, and soybean crops.

Pakistan

The government is keen to pursue a grid-based agro-meteorological system in Pakistan. The government tried to develop the agroecological and crop zoning system for decision-making. A web-based data management system called "Pakistan subnational food systems dashboard" is currently being developed in collaboration with the FAO. However, the majority of these initiatives are in preliminary stages and are undergoing improvements and refinements.

The Philippines

The Philippine Atmospheric, Geophysical and Astronomical Service (PAGASA), a government agency responsible for weather forecasting and monitoring, has ongoing programs to improve meteorological and climate data collection, dissemination, and capacity-building for various sectors, including agriculture. Moreover, different government agencies also have various plans, programs, and policies that support and complement the agro-meteorological data system in the country. For example, the DA-Philippine Rice Research Institute has institutionalized the Philippine Rice Information System (PRISM) that harnesses satellite technology and agro-meteorological data to deliver timely information to rice farmers. Furthermore, the Smarter Approaches to Reinvigorate Agriculture as an Industry in the Philippines (SARAI) project under the Department of Science and Technology (DOST) aims to modernize and enhance the agricultural sector in the country through the application of advanced technologies, including remote sensing, information technology, and data analytics.

The ROK

Research and development to support agro-meteorological data system are being continued by the Rural Development Administration.

Thailand

Thai Meteorological Department is providing daily, weekly, fortnight, quarter, and seasonal agromet forecast data such as average relative humidity, average rainfall, average soil temperature, sun time, and wind run. It is also developing policies to support an agro-meteorological data system in the country.

Carbon Credit Trading and Emission Reduction Program for the Agricultural Sector

The availability of a national carbon credit trading mechanism; a voluntary emission reduction program for the agricultural sector; and types of agricultural projects registered in the mechanism and the program in the eight member economies (see Figure 2), can be summarized as follows:

Bangladesh, Pakistan, and the Philippines

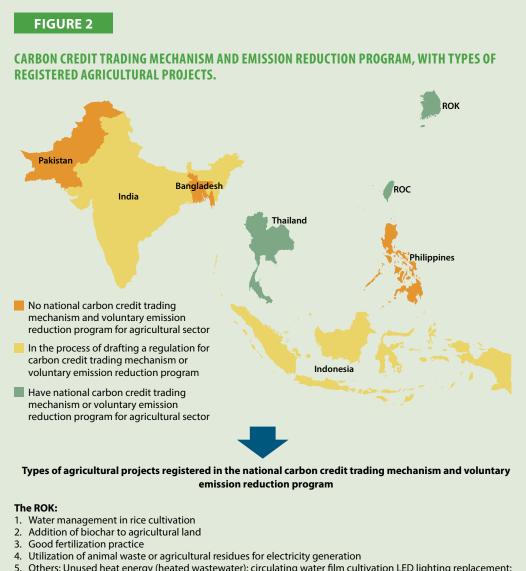
There is no national carbon credit trading mechanism or voluntary emission reduction program for the agricultural sector in Bangladesh, Pakistan, and the Philippines. However, the Government of Pakistan is keen to develop such mechanisms in the near future, though skills, resources, and awareness are the impediments. The Government of the Philippines is engaged in discussions with the Government of Japan to establish a joint crediting mechanism (JCM) for projects related to reduction or removal of methane emissions from rice cultivation. The projects will fall under Article 6.2 of the Paris Agreement and will be located in Luzon, within two different national irrigation systems managed by the National Irrigation Administration (NIA) in the Philippines.

India and Indonesia

India and Indonesia are in the process of drafting regulations for a national carbon credit trading mechanism or a voluntary emission reduction program.

The Government of India published Gazette notifications in 2023 on the Green Credit Program, which is a market-based voluntary scheme proposed to be notified under Environment (Protection) Act, 1986. A green credit will be a unit of an incentive provided for a specified activity, delivering a positive impact on the environment. An activity generating green credits under the Green Credit Program may also get carbon credits from the same activity in the carbon market. Draft Green Credit Program Implementation Rules 2023 have been published in the Gazette for public comments. Eight sectors, including agriculture, are proposed to be included in the scheme.

In Indonesia, there is a regulation for carbon trading, such as Presidential Regulation Number 98 of 2021 (Peraturan President NEK, Nilai Emisi Karbon) concerning the economic value of carbon, but it is not specific to the agricultural sector. For the agricultural sector, Indonesia is drafting a regulation to support the aforementioned presidential regulation.


The ROC, the ROK, and Thailand

There is a national carbon credit trading mechanism or voluntary emission reduction program in the ROC, the ROK, and Thailand.

The ROC established a carbon trading platform, "The ROC Carbon Solution Exchange: TCX" in August 2023, focusing on "voluntary reduction" to conduct domestic carbon rights trading, international carbon rights trading, and carbon consulting services.

The ROK has a national carbon credit trading mechanism for the agricultural sector. There are some major types of agricultural projects that were registered in the mechanism: water management in rice cultivation; addition of biochar to agricultural land; good fertilization practice; utilization of animal waste or agricultural residues for electricity generation; and others. The other projects include unused heat energy (heated wastewater); circulating water film cultivation; LED lighting replacement; high-efficiency thermal insulation material (multi-layer thermal insulation curtain); geothermal heat pump; renewable energy (solar power, solar power, hydroelectric power, wind power); use of by-product fertilizer; cover cropping; conservation tillage; and land use change (rice paddy to upland).

Thailand has a voluntary emission reduction program called "T-VER," covering the agricultural sector. There were two major types of agricultural projects registered in the program: good fertilization practice in agricultural land; and carbon sequestration and GHG emission reductions.

5. Others: Unused heat energy (heated wastewater); circulating water film cultivation LED lighting replacement; high-efficiency thermal insulation material (multi-layer thermal insulation curtain); geothermal heat pump; renewable energy (solar power, solar power, hydroelectric power, and wind power); use of by-product fertilizers; cover cropping; conservation tillage; land use change (rice paddy to upland).

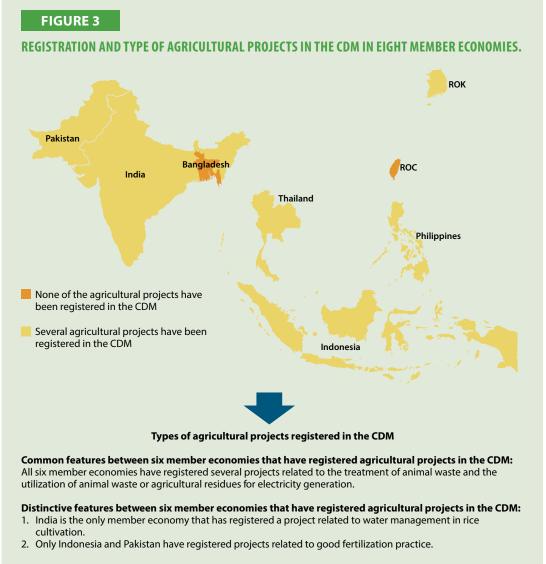
Thailand:

- 1. Good fertilization practice in agricultural land
- 2. Carbon sequestration and reducing emissions

Source: Based on the results of the first and second survey.

Participation in Clean Development Mechanism

The Clean Development Mechanism (CDM) is an international offset mechanism under the Kyoto Protocol that allows crediting of emission reductions from GHG abatement projects in developing countries. Since the ROC is not party to the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, it could not become formally eligible to participate in the CDM.


Among the rest of the seven member economies that are participating in the CDM, only Bangladesh has not registered any of the agricultural projects in the CDM (see Figure 3). Common and distinctive features of agricultural projects registered in the CDM in the other six member economies are as follows:

Common features

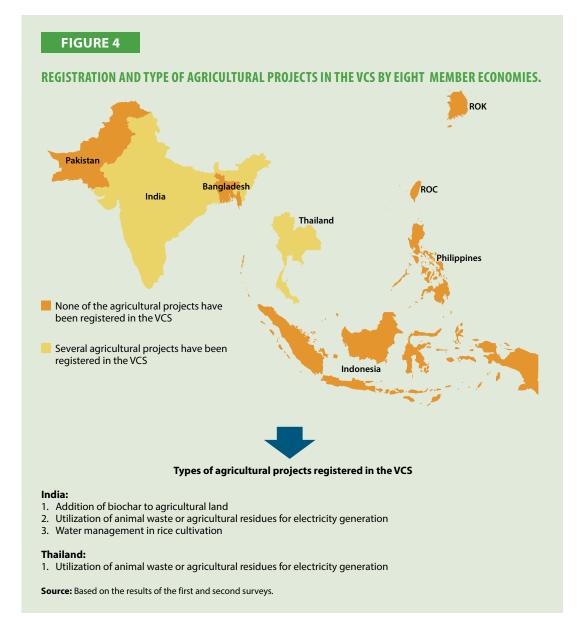
India, Indonesia, Pakistan, the Philippines, the ROK, and Thailand have registered several projects related to treatment and utilization of animal waste or agricultural residues for electricity generation in the CDM.

Distinctive Features

- (1) India is the only member economy that has registered a project related to water management in rice cultivation.
- (2) Only Indonesia and Pakistan have registered a project related to good fertilization practices.

Source: Based on the results of the first and second surveys.

Participation in Verified Carbon Standard


Verified Carbon Standard (VCS) is the world's most widely used GHG crediting program. All eight member economies are participating in the VCS. However, only India and Thailand have registered agricultural projects in the VCS (see Figure 4). Types of agricultural projects registered in the VCS in India and Thailand are as follows:

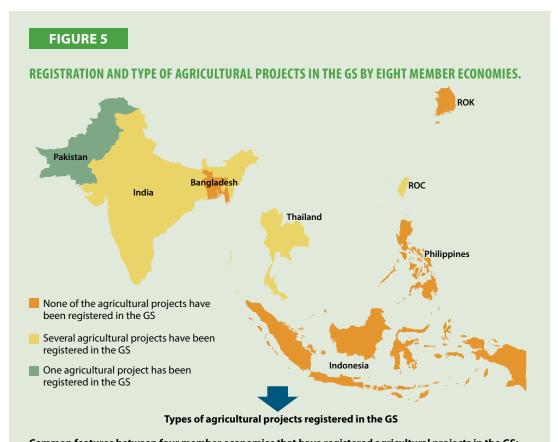
India

- 1. Addition of biochar to agricultural land;
- 2. Utilization of animal waste or agricultural residues for electricity generation; and
- 3. Water management in rice cultivation.

Thailand

1. Utilization of animal waste or agricultural residues for electricity generation.

Participation in Gold Standard


Gold Standard (GS) is an international voluntary carbon offset program focusing on progressing the UN's Sustainable Development Goals (SDGs) and ensuring that projects benefit their neighboring communities. Seven member economies, i.e., except for the ROK, are participating in the GS. India, the ROC, and Thailand have registered several agricultural projects, while Pakistan has registered one agricultural project in the GS (see Figure 5). Common and distinctive features of agricultural projects registered in the GS by these four member economies are as follows:

Common features

Most of the member economies have registered project related to water management in rice cultivation, treatment of animal waste, and utilization of animal waste or agricultural residues for electricity generation.

Distinctive features

1. India is the only member economy that has registered a project related to water management in rice cultivation.

2. Only the ROC has registered a project related to soil carbon sequestration.

Common features between four member economies that have registered agricultural projects in the GS: Most of the member economies have registered projects related to water management in rice cultivation, the treatment of animal waste, and the utilization of animal waste or agricultural residues for electricity generation.

Distinctive features between four member economies that have registered agricultural projects in the GS: Only the ROC has registered project related to soil carbon sequestration.

Source: Based on the results of the first and second surveys.

Participation in Puro Earth

Puro Earth is the world's leading crediting platform for engineered carbon removal. Among the eight member economies, only Thailand is participating in Puro Earth. Thailand has never registered any projects in it but has bought some issued credits of biochar from Puro Earth (see Figure 6).

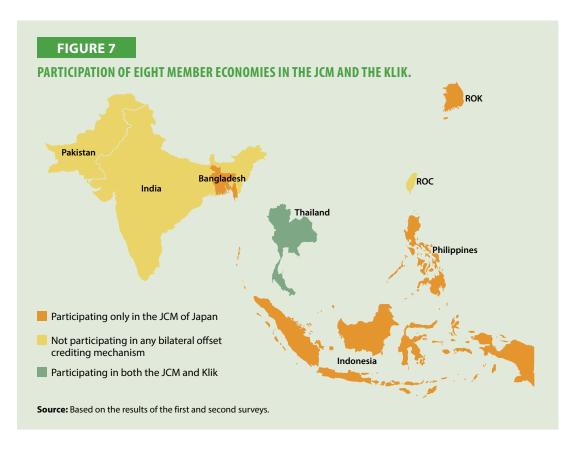
Participation in JCM and Climate Protection and Carbon Offset

As noted earlier, JCM is a Japan-initiated bilateral mechanism for reducing GHG emissions while transferring Japan's technologies to partner countries in exchange for transferring carbon credits to Japan. Climate Protection and Carbon Offset (Klik) is a bilateral mechanism for supporting climate-friendly technologies and innovations in Switzerland and abroad. Participation of the eight member economies in the JCM of Japan and/or Klik of Switzerland, shown in Figure 7, can be summarized as follows:

India, Pakistan, and the ROC

India, Pakistan, and the ROC are not participating in any bilateral offset crediting mechanisms.

Bangladesh, Indonesia, the Philippines, and the ROK


Bangladesh, Indonesia, the Philippines, and the ROK are participating only in the JCM of Japan.

Thailand

Thailand is the only member economy that is participating in both the JCM and the Klik.

Availability of MRV and GHG Validation and Verification Body

Monitoring, Reporting, and Verification (MRV) is a system for monitoring the amount of GHG emissions reduced by a specific mitigation activity and reporting the findings to an accredited

validation and verification body (VVB). The VVB then verifies the report so that the results can be certified, and carbon credits can be issued. The GHG VVB is a qualified and independent third party and operates according to the ISO 14065:2020 general principles and requirements for bodies validating and verifying environmental information. The availability of the MRV system and the GHG VVB in the eight member economies (see Figure 8), can be summarized as follows:

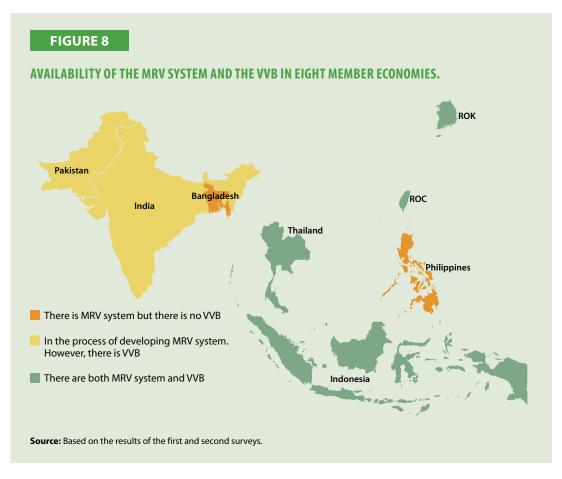
Bangladesh and the Philippines

Although there is the MRV system, there is no GHG VVB in both Bangladesh and the Philippines.

The Philippines collaborates with international organizations and receives support for capacitybuilding in MRV. Organizations such as the United Nations Development Program (UNDP) and the Global Environment Facility (GEF) frequently aid countries such as the Philippines in developing MRV capabilities. Furthermore, the UNFCCC has approved the standardized baseline for methane emissions from rice cultivation in the Philippines (ASB0008) for the CDM Methodology "AMS-III. AU.v4.0," which pertains to methane emission reductions through adjusted water management in rice cultivation. In addition, the Philippines, through the DA-Philippine Rice Research Institute, has contributed to the "Handbook of Monitoring, Reporting, and Verification (MRV) for a GHG Mitigation Project with Water Management in Irrigated Rice Paddies," published in February 2018 by the Institute for Agro-Environmental Sciences, NARO, Japan. The Philippines does not yet have a dedicated national GHG VVB. The GHG validation and verification processes are typically carried out following internationally accepted and approved standards and protocols. The Philippines will adhere to internationally approved guidelines issued by the UNFCCC when implementing projects for emission reductions and removals. One such example is the "Guidelines on the Use of the Closed Chamber Method for GHG Measurement from Rice Cultivation," for which the country has also made contributions as an author through the DA-Philippine Rice Research Institute.

India and Pakistan

Although there is no MRV system, there is GHG VVB in India and Pakistan.


India has an institutional arrangement of GHG inventory preparation under the leadership of Ministry of Environment Forest and Climate Change (MoEFCC).

Pakistan does not currently have institutional arrangements for GHG inventory preparation or a broader climate MRV. However, Pakistan has conducted ad hoc project-based inventory work, which has helped build some institutional capacity for ongoing and continuously improving MRV outputs. The Ministry of Climate Change through the Global Change Impact Study Center in Islamabad has developed a transparency web platform with the support of GIZ Germany and CITEFA France for MRV and ETF strengthening to manage climate change and GHG. Also, the project under the National Forest Monitoring System (NFMS) has developed an MRV system for REDD+ in Pakistan to support continuous monitoring of forest and land/use change. The Ministry of Climate Change (MoCC) has been working toward developing standards to make the climate change monitoring process efficient and effective.

Indonesia, the ROC, the ROK, and Thailand

Both the MRV system and the GHG VVB are there in Indonesia, the ROC, the ROK, and Thailand.

In Indonesia, there are systems such as the Indonesian National Carbon Accounting System (INCAS), designed as a tier 3 type GHG accounting system to support Indonesia's MRV requirements for the land-based sectors. The INCAS is also designed for GHG reporting for the

Agriculture, Forestry, and Other Land Use (AFOLU) sectors, as well as for tracking progress in achieving national emission reduction targets. The INCAS was developed by the Ministry of Environment and Forestry, with support and inputs from other national institutions, such as the National Aeronautics and Space Agency (LAPAN), and the Ministry of Agriculture. Indonesia also has the GHG VVB, which is certified by the National Accreditation Committee (KAN). One of the accreditation services provided by the KAN is the accreditation scheme for the Lembaga Validasi dan/atau Verifikasi Sektor Informasi Lingkungan Lingkup Gas Rumah Kaca (LVV GRK) or Validation and/or Verification Institution for Environmental Information Sector in the Scope of GHG. The ROC's GHG emissions inventory registration is an organizational inventory. Its complete mechanism is based on the inventory report standard structure of the ISO14064-1 international standard and the US Greenhouse Gas Reporting Program (GHGRP) to establish its consistent inventory procedures, technical regulations, and management methods. Controlled objects should go to the inventory and registration area of the National GHG Registration Platform in accordance with the law. The Environmental Protection Agency is entrusted to promote members of the International Accreditation Forum (IAF), International Multilateral Mutual Recognition Agreement (MLA), to declare that legal entities meet specific standards or requirements based on GHG verification and verification, such as ISO14065, ISO14066, ISO14064-3, and other international standards. Inspection agencies certified by the ROC apply to the Environmental Protection Agency and obtain a domestic inspection execution license in accordance with the regulations and requirements of the ROC's inspection agency management to ensure that the implementation work and management mechanisms of the certification agency and the inspection agency comply with international requirements.

Calculating and Reporting Methane Emission Reductions from Rice Cultivation by Water Management

The COE on CSA, implemented by the NARO, has been involved in the development of a methodology for calculating and reporting the reduction of methane emissions from paddy soils by mid-season drainage, which is one of the water management practices. The methodology, "AG-005 extension of mid-season drainage period in rice cultivation," developed by the COE on CSA and the Ministry of Agriculture, Forestry, and Fisheries of Japan was registered as one of the agricultural methodologies in the J-Credit Scheme, a scheme set up in 2013 by the government of Japan to certify the amount of GHG emission reductions and removals in the country, in March 2023. This methodology is essential not only for calculating and reporting the reduction of methane emissions from paddy soils by water management practice in a project but also for generating tradable carbon credits.

According to the results of the first and second surveys, all eight member economies gave the highest score to the importance of methodology for calculating and reporting the reduction of methane emissions from paddy soils by water management practice (see Figure 9). On why the methodology was so important, Bangladesh stated that the GHG measurement from rice fields was not robust and they were not very experienced with such methods. As a result, it was crucial for Bangladesh to establish a baseline for methane emission data; develop mitigation strategies; monitor ongoing research activities, data analysis, and reporting; and communicate effectively.

Various types of technologies were practiced or promoted in India, Indonesia, Pakistan, the Philippines, the ROC, and the ROK to reduce methane emissions from paddy soils, while only water management was practiced or promoted in Bangladesh and Thailand (see Table 1).

TABLE 1

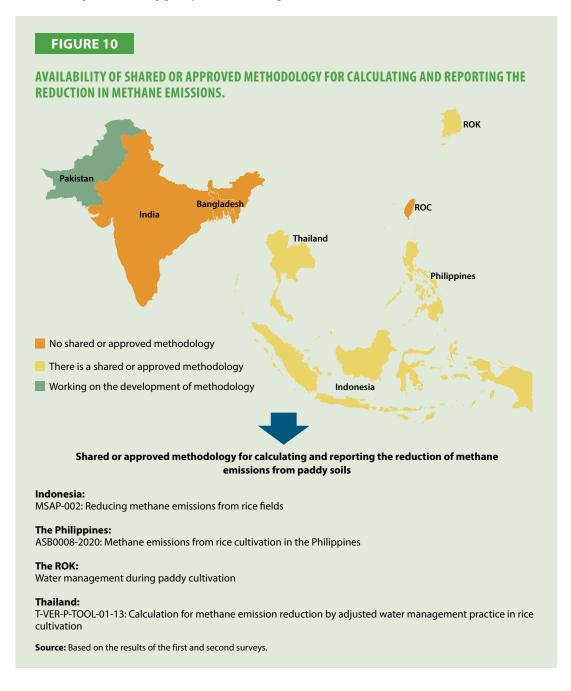
TYPES AND TECHNOLOGIES PRACTICED TO REDUCE METHANE EMISSIONS FROM PADDY SOILS.

	Water management	Soil/organic matter management	Other agronomic management	Others
Bangladesh	0			
India	O AWD		O System of rice intensification/direct sowing rice	Crop diversification
Indonesia	O AWD/Intermittent	O Organic and balanced fertilizers	O Low methane rice varieties	
Pakistan	O Drip irrigation, AWD, raised bed	0	O Minimizing tillage and direct seeding of rice	O Land use change
The Philippines	0	0	0	O Direct Seeding, Aerobic rice
The ROC	0	O Well-decomposed compost, improved method of manure and straw application	O Fertilizers containing sulphate and superphosphate	O Land use change
The ROK	0	0	0	O Land use change
Thailand	0			

Source: Based on the results of the first and second surveys. Note: \bigcirc indicates that the technology is practiced or promoted in the economy.

Only four member economies, namely, Indonesia, the Philippines, the ROK, and Thailand, have a shared or approved methodology for calculating and reporting the reduction of methane emissions from paddy soils (see Figure 10).

Indonesia


MSAP-002 is used for reducing methane emissions from rice fields.

The Philippines

ASB0008-2020 is used in the context of methane emissions from rice cultivation.

The ROK

Water management during paddy cultivation is practiced.

Thailand

T-VER-P-TOOL-01-13 is applied for calculation of methane emission reduction by adjusted water management practice in rice cultivation.

Methodology for Calculating and Reporting Carbon Stock in Agricultural Soils by Biochar **Application**

The COE on CSA has been involved in developing methodologies for calculating and reporting soil carbon stock resulting from biochar addition to mineral soil in cropland/grassland. The methodology "AG-004 Biochar addition to mineral soil in cropland/grassland" developed by the COE on CSA was registered in September 2020 under the J-credit Scheme. This methodology is essential not only to calculate and report carbon stock in agricultural soils resulting from biochar addition of a project but also to generate tradable carbon credits.

Except for the ROC and the ROK, six member economies, namely, Bangladesh, India, Indonesia, Pakistan, the Philippines, and Thailand, gave the highest score to the importance of methodology for calculating and reporting carbon stock in agricultural soils by biochar application (see Figure 11). Bangladesh and Indonesia stated that the methodology was very important because carbon was the main driver for determining the soil's potentiality and its output. It also indicated how much carbon was sequestrated in soils. Regular updates and monitoring are crucial to tracking changes in carbon stocks over time and to evaluate the effectiveness of soil management practices in achieving carbon sequestration goals. It is very important to measure and calculate carbon stock in agriculture soils to know how sufficient the carbon level is in agricultural soils.

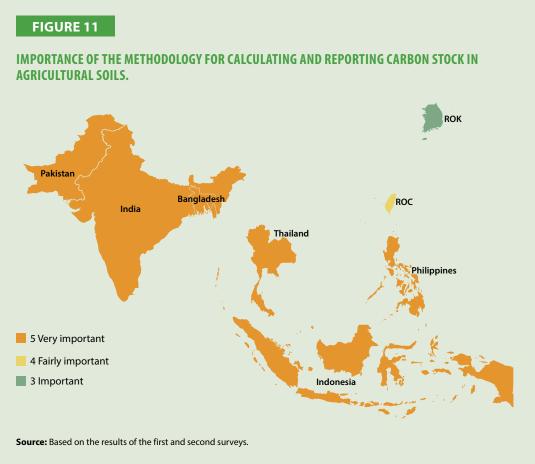


Table 2 shows the outlook of biochar as a soil amendment for soil carbon sequestration, major potential organic materials for biochar production, and competing uses of major potential organic materials in the eight member economies. All member economies, except for Bangladesh, considered biochar as an important soil amendment for soil carbon sequestration. In all the member economies, rice husks, rice straw, sugarcane bagasse, and livestock manure were the major potential organic materials for biochar production due to their large quantities. However, competing uses of these materials are expected. For example, rice husks are used for various purposes such as animal feeding, bedding, fuel, and brick making. Rice straw is used for bioenergy, biofuel, mushroom production, and animal feeding, and is sometimes burned on the farm. Sugarcane bagasse is widely used as boiler fuel and animal fodder, as well as for producing bioethanol.

TABLE 2

	Outlook for biochar as a soil amendment for soil carbon sequestration	Note for outlook		Major potential rganic materials for biochar production	Competing uses of major potential organic materials
Bangladesh	Rare	Very rare to produce biochar in Bangladesh	•	Rice husks	70% of rice husks have been utilized for feed, bedding, and fuel
India	Yes	Need to understand long-term effects of biochar; energy is required to produce biochar	•	Rice straw Sugarcane bagasse	Rice straw is burned on farm, and some areas use it as animal fodder. Bagasse is used for fuel in boilers to produce steam and generate electricity
Indonesia	Yes	Indonesia needs to re-use agricultural waste to improve and meet soil carbon needs	•	Rice husks	Animal husbandry, brick making, and fuel
Pakistan	Yes	Some field trials of biochar application are ongoing	•	Rice straw Sugarcane bagasse	Animal fodder, domestic burning, and organic fertilizers
The Philippines	Yes		•	Rice straw Rice husks Coconut husk	Rice straw is used for bioenergy, biofuel, mushroom production, and animal feeds. Rice husks are used for biochar material, fuel, and bedding. Coconut husk is used for cocofiber, fuel, particle board, and ropes.

OUTLOOK OF BIOCHAR FOR SOIL CARBON SEQUESTRATION, MATERIALS NEEDED, AND CHALLENGES.

	Outlook for biochar as a soil amendment for soil carbon sequestration	Note for outlook	Major potential organic materials for biochar production	Competing uses of major potential organic materials
The ROC	Yes	There has been a draft proposal for biochar quality specifications and safety management regulations since 2000, but not much progress has been made yet	 Biomass waste, crop residue, and livestock manure 	Rice husks are used for livestock bedding, fuel, etc.
The ROK	Yes	There are ongoing projects on biochar application	 Rice straw Poultry manure 	Rice straw is used for feeding, bedding, and incorporation. Poultry manures have been used as compost and soil amendment
Thailand	Yes	Limited information is available for carbon sequestration	 Rice husks Sugarcane bagasse 	40% of rice husks are utilized as feed fertilizer, bedding, and fuel. Bagasse is used as boiler fuel in sugar factories as well as for producing bioethanol

Source: Based on the results of the first and second surveys.

Need and Readiness for Implementing Soil Carbon Sequestration Visualization Tool

The COE on CSA has developed a web-based soil carbon sequestration visualization tool that can simply visualize the effects of organic material inputs on soil carbon sequestration and GHG emissions in Japan. By simply selecting a location on a map and choosing a crop and organic material management practice from a menu, changes in soil carbon content will be calculated for the next 20 years and a total evaluation of GHG emissions (methane, nitrous oxide, and carbon dioxide) will be displayed. This tool can be used to support policy evaluation of the government. The Ministry of Agriculture, Forestry and Fisheries of Japan uses this tool to calculate soil carbon stock and GHG emissions to evaluate the effects of activities eligible for the Direct Payment for Environmentally Friendly Agriculture in which farmers are given direct payment subsidies in exchange of their efforts to shift from conventional to environmentally friendly farming, for global warming prevention.

As shown in Figure 12, most of the member economies have evaluated the importance of soil carbon sequestration visualization tools with high scores. Bangladesh noted that the tool was very important because it might be easy to use and give a complete picture of carbon sequestration in agriculture. In addition, farmers could claim carbon credit for reduced emissions.

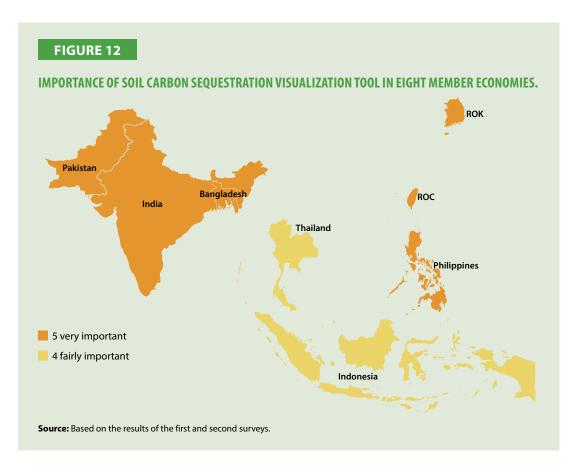


Table 3 shows the availability of soil map, available data from soil map, availability of long-term experiment data of organic matter inputs, and availability of long-term soil carbon observation data, in the eight member economies. To develop and apply the Soil Carbon Sequestration Visualization Tool, the following data are needed: soil map with data of clay content, carbon content or organic matter content, and bulk density; long-term experiment data of organic matter inputs; and long-term soil carbon observation data. Table 3 shows that all eight member economies have most of data needed for developing the Soil Carbon Sequestration Visualization Tool.

T	A	B	L,	E	3	

	Availability of soil map	Available data from soil map	Availability of long-term experiment data on organic matter inputs	Availability of long-term soil carbon observation data
Bangladesh	0	Carbon content, organic matter content, pH, NPK, EC, ESP, OC, soil type/texture	0	0
India	0	Clay content, carbon content, bulk density, pH, NPK, EC, ESP, OC, soil type/texture	0	0
Indonesia	0	Clay content	0	0

POTENTIAL DATASETS FOR THE SOIL CARBON SEQUESTRATION VISUALIZATION TOOL

	Availability of soil map	Available data from soil map	Availability of long-term experiment data on organic matter inputs	Availability of long-term soil carbon observation data
Pakistan	O Not entire country	pH, NPK, EC, ESP, OC, soil type/texture	O Only short-term	Only short-term
The Philippines	0	Clay content, carbon content, organic matter content, Bulk density	Ο	0
The ROC	0	Clay content, carbon content, organic matter content, bulk density	O Only short-term	0
The ROK	0	Clay content, carbon content, organic matter content, bulk density, pH, OM, available P, K, Ca, and Mg, available SiO2, bulk density, OC, soil texture	0	0
Thailand	0	Carbon content, organic matter content, pH, NPK, EC, ESP, OC, soil type/texture	0	0

Source: Based on the results of the first and second surveys.

Notes: (1) \bigcirc indicates that data is available.

(2) pH stands for potential of hydrogen; NPK stands for nitrogen, phosphorus, and potassium; EC stands for soil's electrical conductivity; ESP stands for exchangeable sodium percentage; and OC stands for organic carbon.

Need and Readiness for Implementing Agro-meteorological Grid Square Data System

The COE on CSA has also developed a meteorological data system that provides daily meteorological data and covers entire Japan in a 1-km grid. The dataset comprises 13 different meteorological elements, including daily mean air temperature, daily accumulated global solar radiation, daily mean humidity, and snow water equivalent. This dataset can be combined with crop development prediction models and other existing techniques and knowledge regarding crop responses to meteorological stress to formulate novel crop management technologies.

As shown in Figure 13, all eight member economies have evaluated the importance of the gridbased agro-meteorological data system with the highest score. Bangladesh said that the grid-based agro-meteorological data system was very important because it made it simple to collect, analyze, and communicate meteorological and climate data at a fine-grained, regional level to assist farmers and policymakers in making informed decisions. By providing accurate and timely data on temperature, rainfall, humidity, and other meteorological parameters, the system helped farmers plan their crop cycles, irrigation schedules, and pest control measures. It also aided in disaster preparedness, enabling authorities to anticipate and respond to weather-related threats, such as floods or droughts. Ultimately, the system contributed to increased agricultural productivity, food security, and sustainable rural development.

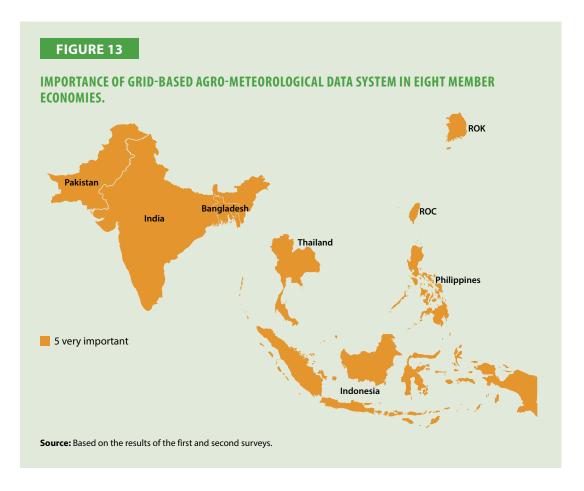


Table 4 shows the availability of grid-based agro-meteorological data system in the eight member economies. Some member economies already have the system in place, while some are currently developing the system. To develop a grid-based agro-meteorological data system and combine the data with crop development prediction models and other existing techniques to formulate novel crop management technologies, data that are commonly used for crop management, such as air temperature, precipitation, relative humidity, wind speed, and solar radiation, are required. As shown in Table 5, most of the member economies have most of the important data needed for developing a grid-based agro-meteorological data system.

TABLE 4

AVAILABILITY OF GRID-BASED AGRO-METEOROLOGICAL DATA SYSTEM IN EIGHT MEMBER ECONOMIES.

	Availability of grid-based agro-meteorological data system
Bangladesh	The installation of grid-based meteorological data system is ongoing.
The gridded data (0.25 x 0.25) for rainfall and surface air temperature (1x1) of	
India	available with Indian Meteorological Department, Pune, India for the entire country.
	Grid-based agro-meteorological data is provided by the Agricultural Instruments
Indonesia	Standardization Agency (BSIP), the Ministry of Agriculture.
Pakistan	There is a satellite-based crop monitoring system in Pakistan that uses remote sensing
Pakistan	and GIS to forecast and estimate crop statistics of major crops.
The	There are projects using satellites for deriving grid-based agromet data. Free satellite images
Philippines	like Sentinel 1 and 2 with resolutions of 100m and 10m, respectively, are used.

	Availability of grid-based agro-meteorological data system
The ROC	A total of 176 agricultural meteorological stations are currently maintained by the Central Meteorological Administration. It also performs data analysis and compilation of data from various agricultural meteorological stations, releases weekly agricultural meteorological forecasts, and compiles data.
The ROK	It is currently under development and has not yet been released.
Thailand	Thai Meteorological Department (TMD)'s Numerical Weather Prediction System provides short-range forecast with grids 2km ² and 6km ² , medium-range forecast with grids 18km ² , and long-range forecast with grids 27km ² . Geo-Informatics and Space Technology Agency (GISTDA) is also implementing "Weather Data and Daily Agricultural Image Collection System" with 24-station Field Server.

Source: Based on the results of the first and second surveys.

TABLE 5

WEATHER DATA, INCLUDING TIMESTEP AND PERIOD, AVAILABLE FROM WEATHER STATIONS IN EIGHT MEMBER ECONOMIES.

		Bangladesh	India	Indonesia	Pakistan	The Philippines	The ROC	The ROK	Thailand
	Availability	0		0	0	0	0	0	
Mean air temperature	Timestep	Daily		Daily	Daily, Monthly	Daily	Daily, weekly, monthly	Hourly	
	Periods	1981–		1980–	1960–	1985–	1998~	1960s-	
	Availability	0	0	0	0	0	0	0	0
Minimum air temperature	Timestep	Daily	Daily	Daily	Daily, monthly	Daily	Daily, weekly, monthly	Hourly	Daily, monthly
	Periods	1981–	1970–	1980–	1960–	1985–	1998~	1960s-	
	Availability	0	0	0	0	0	0	0	0
Maximum air temperature	Timestep	Daily	Daily	Daily	Daily, monthly	Daily	Daily, weekly, monthly	Hourly	Daily, monthly
	Periods	1981–	1970–	1980–	1960–	1985–	1998~	1960s-	
	Availability	0	0	0	0	0	0	0	0
Relative humidity	Timestep		Daily	Hourly	Daily, Monthly	Hourly	Daily, weekly, monthly	Hourly	Hourly, daily, monthly
	Periods	1981–	1970–	1980–	1990–	1985–	1998~	1960s-	
	Availability	0	0	0	0	0	0	0	0
Wind speed	Timestep		Daily	Hourly	Daily	Hourly	Daily, weekly, monthly	Hourly	Hourly, monthly
	Periods	1981–	1970–	1980–	1990–	1985–	1998~	1960s-	

		Bangladesh	India	Indonesia	Pakistan	The Philippines	The ROC	The ROK	Thailand
	Availability			0	0		0	0	0
Solar radiation	Timestep			Daily	Daily		Daily, weekly, monthly	Hourly	Hourly, daily, monthly
	Periods			1980–	1990–		1998~	1960s-	
	Availability	0	0	0	0	0	0	0	0
Precipitation	Timestep		Daily	Daily	Daily	Daily	Daily, weekly, monthly	Hourly	3 Hour, daily, monthly
	Periods	1981–	1970–	1980–	1960–	1985–	1998~	1960s-	

Source: Based on the results of the first and second surveys. **Note:** O indicates that data is available.

Key Stakeholders in CSA and Their Efforts

In the survey, eight national resource persons from the eight member economies were asked to identify key stakeholders in CSA, as well as their efforts, across the following four categories: government agency; private enterprise, university or research institute, and others such as international organizations; non-governmental organization (NGO); and non-profit organization (NPO). The results regarding key stakeholders in CSA and their efforts in climate change mitigation and adaptation in agriculture are shown in Tables 6–9.

TABLE 6

KEY GOVERNMENT AGENCIES IN CSA AND THEIR EFFORTS IN EIGHT MEMBER ECONOMIES.

Member economy	Key government agency in CSA					
	Name: The Ministry of Agriculture					
Bangladesh	Effort: Develop action plans for climate change, develop climate change mitigation and adaption technologies, and provide support to conduct research in the mitigation of GHG emissions in the agricultural sector.					
	Name: The Ministry of Agriculture of the ROC					
The ROC	Effort: Develop action plans for climate change and support the development of climate-change mitigation and adaptation technologies.					
	Name: Department of Climate Change, the Ministry of Environment of the ROC					
	Effort: Provide climate-change response policies, manage GHG emissions/ reductions, and strengthen climate change adaptation resilience.					
	Name: National Science and Technology Council of the ROC					
	Effort: Develop action plans and projects for climate change and support the development of climate-change mitigation and adaptation technologies					
	Name: Ministry of Agriculture and Farmers Welfare, Government of India					
India	Effort: Develop policies and action plan for climate-resilient agriculture in India, support the technologies for adaptation to climate change with various policies such as the National Mission on Sustainable Agriculture, National Food Security Mission, PM Krishi Sinchai Yojna, etc.					
	Food Security Mission, PM Krishi Sinchai Yojna, etc.					

Member economy	Key government agency in CSA
	Name: Agency of Agriculture Extension and Human Resource Development (AAEHRD), The Ministry of Agriculture
Indonesia	Effort: Develop action plans for climate change and support the development of climate-change mitigation and adaptation technologies through CSA SIMURP.
	Name: The CSA SIMURP Program
	Effort: Implement the CSA technology as the Province Project Implementation Unit (PPIU).
	Name: The Ministry of National Food Security and Research (MNFS&R) of Pakistan
	Effort: Develop action plans for promoting climate-smart agriculture practices for climate-change mitigation and adaptation in the agricultural sector of Pakistan.
	Name: The Ministry of Climate Change and Environmental Coordination (MoCCEC)
Pakistan	Effort: Mainstream climate change in the economically and socially vulnerable sectors of the economy and steer Pakistan toward climate-resilient development. It is also a key stakeholder in developing policy recommendations and promoting carbon credit trading mechanisms in the country. The provincial ministries on Climate Change Forestry, Environment and Wildlife are its key subnational partners.
	Name: The Ministry of Planning Development and Special Initiatives (PD&SI), Economic Affairs Division (EAD)
	Effort: Manage Pakistan's socioeconomic development in a strategic and sustainable manner and be responsible for resource allocation, coordination, and planning.
	Name: Department of Agriculture (DA)
The Philippines	Effort: Develop comprehensive initiatives to address climate change in the agricultural sector and implement measures to enhance the resilience of farmers to climate-related challenges, including the development of climate-smart technologies. Additionally, the department has been actively engaged in capacity-building and awareness campaigns to empower farmers with the knowledge and tools for climate adaptation. The multifaceted approach aims to both mitigate emissions and help the agricultural sector adapt to the changing climate. The department also provides some funds to implement a few exploratory research on GHG measurement from animals and rice paddies. Furthermore, The Philippine Rice Research Institute (PhilRice), an attached agency to the DA is the premier research body that has conducted research on GHG emissions from rice paddies, along with the IRRI (1994–2000) and the NARO-MAFF, Japan (2013–2017). The institute is the only government agency that has trained, experienced, and competent staff to implement GHG measurement projects in the country as defined by the UNFCCC. Moreover, the Climate Resilient Agriculture Office (CRAO) of DA that cuts across policy instruments and agencies of the department implements seven programs that include Mainstreaming Climate Change Adaptation and Mitigation Initiative in Agriculture, Climate Change Information System, Philippine Adaptation and Mitigation in Agriculture Knowledge Toolbox, Climate-smart Agriculture Infrastructure, Financing and Risk Transfer Instruments on Climate Change, Climate-smart Agriculture and Fisheries Regulations, and Climate-smart Agriculture Extension System.

Member economy	Key government agency in CSA		
	Name: Department of Science and Technology (DOST)		
	Effort: The DOST supports research and development initiatives related to climate science, weather forecasting, and development of climate-resilient technologies for agriculture.		
The Philippines	Name: Climate Change Commission (CCC)		
	Efforts: The CCC is the government agency responsible for coordinating on climate- change policies and programs. It works on developing strategies and action plans to reduce GHG emissions across all sectors, including agriculture. Universities in the Philippines also conduct research and development works to address the problems brought about by climate change.		
	Name: Rural Development Administration Climate Change Assessment Division		
The ROK	Effort: It measures GHG emissions and develops various emission factors to reduce GHG emissions.		
THE NOR	Name: Korea Agricultural Technology Promotion Agency		
	Effort: A voluntary GHG reduction project is implemented, and incentives are provided.		
	Name: The Ministry of Agriculture and Cooperatives (MOAC) of Thailand		
Thailand	Effort: The Committee on Agricultural and Cooperative Development Policy and Planning of the MOAC has developed Agricultural Action Plan for climate change 2023–27, including the following five strategies: (1) raise the level o climate adaptation of farmers and relevant businesses in the supply chain or agriculture; (2) participate in reducing GHG emissions throughout the agricultural supply chain to lessen long-term effects of climate change; (3) develop databases and raise awareness on the impact of climate change ar adaptation and participation to decrease GHG emissions; (4) develop huma capacity in the agricultural sector and extend collaboration with stakeholde cope with climate change; and (5) drive and act on climate change operation		
	Name: Department of Climate Change and Environment, Ministry of Natural Resources and Environment		

TABLE 7

KEY PRIVATE ENTERPRISES IN CSA AND THEIR EFFORTS IN EIGHT MEMBER ECONOMIES.

Member economy	Key private enterprise in CSA		
Bangladesh	Not indicated		
	Name: CH Biotech		
	Effort: Research and develop efficient, precise, low-carbon plant growth regulators and fertilizer products that meet the needs of modern agricultural production.		
	Name: Smartagri Integration Service Co., Ltd.		
The ROC	Effort: Integrate information and communication technology applications to develop smart agricultural production management solution technologies and information systems.		
	Name: Agneeds		
	Effort: With ecological agriculture as its core technology, it provides agricultural technical consulting and supplies its own brand materials.		

Member economy	Key private enterprise in CSA		
	Name: Grow Indigo (Agriculture Technology Start up) established in 2018 by Mahyco Grow and Indigo Ag.		
India	Effort: Help farmers in adopting carbon farming through regenerative practices like cover crops and no-till to improve soil health for smallholder farmers in India.		
Indonesia	Not indicated		
	Name: The South Asian Conservation Agriculture Network (SACAN)		
	Effort: Provide consultancy services in climate smart agriculture resource conservation technologies (CSARCTs) to enhance agriculture productivity.		
	Name: Sustainable Agriculture, Water, and Intelligent Ecosystem (SAWIE)		
Pakistan	Effort: Combine geospatial data with the power of machine learning and IoT to provide smart and sustainable solutions to farmers.		
	Name: Rabail Sprinkler and Drip Irrigation Technologies		
	Effort: Provide consultancy services in establishing, promoting, and capacity building on the sprinkler, drip, and solar-powered pumping systems		
	Name: Ostrom Climate Solutions Inc., Vancouver Canada		
	Effort: Provide members of Irrigators Associations in the Upper Pampanga River Integrated Irrigation Systems with capacity building and support for the adoption of alternate-wetting and drying (AWD) technology through farmer field schools, and eventually generate carbon credits from which incentives for participating farmers is derived		
	Name: Green Carbon Inc.		
	Effort: Ongoing proposals for carbon credits, implementation of AWD to reduce GHG in the Philippines		
	Name: Creattura Company Ltd., Tokyo, Japan		
The Philippines	Effort: Establish a pilot project (The Climate Resilient Rice Farming in Pangasinan, Philippines) of 1,000 hectares in the Dipalo River Irrigation System with main irrigation source from the San Roque Dam. The focused technology is AWD. Creattura aims to implement and support initiatives that aim to reduce GHG emissions.		
	Name: Sagri		
	Effort: A Japanese agri-tech company, with expertise in satellite data analysis on farmland, introduced its technologies to leverage carbon credit to convert GHG reduction into cash.		
	Name: Waste X		
	Effort: Support agricultural producers in the Philippines to utilize biomass waste while generating additional income and reduce carbon emissions.		
The ROK	Not indicated		
	Name: Thailand GHG Management Organization (public organization) or the TGO		
Thailand	Effort: The mechanism is implemented under the methodology of GHG mitigation, including Thailand Voluntary Emission Reduction Program (T-VER), Low Emission Support Scheme (LESS), and Clean Development Mechanism (CDM).		
	Name: Wave BCG, Varuna, etc.		

Member economy	Key private enterprise in CSA		
	Effort: Try to implement the project to reduce GHG under the T-VER or other international mechanisms. Those companies are comprehensive businesses on carbon credit.		
Thailand	Name: Thai feed mill association, Mitr Phol Sugar Company, Siam Quality Starch Company, etc.		
	Effort: The private sectors/companies related to plant production have some policies to support farmers to produce economic crops under CSA.		

TABLE 8

KEY UNIVERSITIES OR RESEARCH INSTITUTES IN CSA AND THEIR EFFORTS IN EIGHT MEMBER ECONOMIES.

Member economy	Key university or research institute in CSA				
	Name:	Bangladesh Rice Research Institute (BRRI)			
Bangladesh	Effort:	Develop climate-smart technologies in rice cultivation to reduce the			
		negative impact of climate change.			
Name: National Chung Hsing University		National Chung Hsing University			
	Effort:	It established the Smart Sustainable New Agriculture Research and			
		Development Center. The main projects promoted include developing			
		time-saving and labor-saving machinery and equipment to solve the			
		problem of human resource shortage; build a big-data database and			
		analysis platform to collect important information; build a common			
		information platform that meets the needs and development of			
		agricultural production and food industry to increase the speed of information transmission; and promote food and agriculture education			
		· · · ·			
		and combine science and technology with education to improve overa agricultural production efficiency. In addition, demonstration sites and			
		talent cultivation centers integrating industry, academia, and R&D un			
		have also been established to cultivate talents related to smart			
The ROC		agriculture.			
The NOC	Name:	National Chiayi University			
	Effort:	National Chiayi University established the Smart Food and Agriculture			
		Teaching and Research Center in 2021. It mainly promotes the			
		development and application guidance of smart agricultural technology,			
		including drone education and training, AI, IoT, and big data collection,			
		analysis, and application.			
	Name:	National Ilan University			
	Efforts:	(1) Build mobile smart agriculture based on artificial intelligence.			
		(2) Use probiotics to protect the health of poultry and livestock and			
		convert high-value agricultural waste.			
		(3) Provide guidance, promotion, and improvement of agricultural			
		technology in Yilan and Hualien areas.			
		(4) Cultivate current and future agricultural talents.			

Member economy		Key university or research institute in CSA		
	Name:	Indian Agricultural Research Institute, (IARI) New Delhi, also known as		
		Pusa institute		
	Effort:	The institute is working since 1993 toward the development of emission		
		inventories of GHG from agricultural soils, development of emission		
		factors for N2O from managed agricultural soils and CH4 from rice		
		paddies. The institute is also working on assessing the CH4 mitigation		
		potential of different water management options in rice and various agri		
India		management options for mitigation of nitrous oxide emission from		
		cropped soils. The institute is also working toward the development of		
		climate-change mitigation and adaption technologies for agriculture and		
		breeding of different stress-tolerant varieties of crops.		
	Name:	Central Research Institute for Dryland Agriculture, Hyderabad (CRIDA)		
	Effort:	Develop climate-change adaption technologies for rainfed agriculture in		
		the country.		
	Name:	Indonesian Agricultural Environmental Standardization Institute (IAESI),		
		Pati, Central Java, Indonesia		
Indonesia	Effort:	Study climate-change mitigation and adaption technologies for		
		agriculture.		
	Name:	The Climate, Energy and Water Research Institute (CEWRI) of the National		
		Agricultural Research Centre (NARC) in Pakistan Agricultural Research		
		Council (PARC) under the MNFS&R		
	Effort:	It is actively involved in developing climate-smart agricultural techniques		
		related to land, water, and energy management in agriculture and their		
		promotion through capacity building and coordination with line		
		departments. Other research institutes of the National Agricultural		
		Research Centre (NARC) under PARC are developing crop varieties		
		resistant to droughts, diseases, pests, and multiple agro-silvo-pastoral		
		management practices.		
	Name:	The University of Agriculture Faisalabad (UAF); the University of		
Pakistan		Agriculture Peshawar (UAP); and the National University of Science and		
rakistali		Technology (NUST) Islamabad		
	Effort:	Actively involved in academic and field research in developing climate-		
		smart agricultural practices for Pakistan.		
	Name:	Global Climate Change Impact Study Centre (GCISC) under the (MoCC) of		
		Pakistan		
	Effort:	The GCISC is mandated for national-level R&D effort, capacity building,		
		policy analysis, information dissemination, and assistance to national		
		planners and policymakers on issues related to past and projected future		
		climatic changes in the country; their likely impacts on the key		
		socioeconomic sectors of the country such as water, food, agriculture,		
		energy, forestry, health, and ecology; and appropriate adaptation and		
		mitigation measures.		

Member economy	Key university or research institute in CSA				
	Name:	DA-Philippine Rice Research Institute (PhilRice)			
	Effort:	PhilRice conducts research and development activities focused on rice production, including the development of climate-smart rice varieties and sustainable farming practices that reduce emissions and enhance climate resilience. PhilRice has partnered with IRRI (1994–2000) and NARO-MAFF, Japan (2014–17) on several projects related to mitigating GHGs and adaptation to climate change.			
	Name:	DOST- Philippine Council for Agriculture and Natural Resources Research and Development			
The Philippines	Effort:	Support R&D agenda related to Agriculture 4.0 that is smart, green, and S&T-based. One of its priority projects is geared toward climate change adaptation and mitigation, and disaster risk reduction in the agriculture and forestry sectors.			
	Name:	University of the Philippines Los Banos (UPLB), Central Luzon State University			
	Effort:	UPLB is one of the country's premier agricultural universities and has various research units and departments dedicated to agricultural and environmental sciences. It also conducts research on climate-resilient crop varieties, sustainable farming practices, and environmental conservation. The Central Luzon State University conducts research on climate change and has established the Institute of Climate Change and Environmental Management (ICCEM). It has included relevant subjects in its curriculum and also offers MS degree in environmental science.			
	Name:	Gyeongsang National University.			
The ROK	Effort:	To reduce GHG emissions, various GHG emission factors have been developed, and various reduction technologies are currently being developed.			
	Name:	Horticulture Research Institute (HRI); Field and Renewable Energy Crops Research Institute (FCRI); and Agricultural Engineering Research Institute under the MOAC.			
-	Nationa	l Science and Technology Development Agency (NSTDA)			
Thailand	Effort:	Develop climate-change mitigation and adaption technologies for agriculture.			
	Name:	Universities related to agriculture, such as Kasetsart University, Konkean University, Chiangmai University, and Price of Songkha University.			

TABLE 9

KEY INTERNATIONAL ORGANIZATIONS OR NGOs, NPOs IN CSA AND THEIR EFFORTS IN EIGHT MEMBER ECONOMIES.

Member economy	Key international organization or NGOs, NPOs in CSA				
	Name	Name: Food and Agriculture Organization (FAO)			
Bangladesh	Effort:				
Dungluucon	Enort:	Climate-change mitigation, adaptation, and agri-food systems transformation			
	Name:	The APO Green Center of Excellence			
	Effort:				
	Enort.	Since 2014, it has promoted and planned green farming teams to carry out technical service exchanges in six member countries (Vietnam,			
		Indonesia, Philippines, Lao PDR, India, and Thailand), mainly focusing on			
		topics such as resource recycling, green energy, green factories, and			
		ecological agriculture.			
	Name:	The ROC Green Productivity Foundation			
	Effort:	Assist the government to promote various environmental protection and			
The ROC		energy-saving policies, actively guide industries to improve			
		environmental economic efficiency, and promote enterprises to move			
		toward sustainable development and operations.			
	Name:	The ROC Ecological Agriculture Development Association			
	Effort:	(1) Verify green ecological agricultural products and agricultural product			
		processing and assist farmers in putting their products on the blockchain to make them traceable and non-medifable			
		to make them traceable and non-modifiable.			
		(2) Convene relevant plant science experts and scholars to establish a			
	Name:	carbon sequestration expert committee. International Maize and Wheat Improvement Center (CIMMYT), Borlaug			
	Name:	Institute for South Asia (BISA)			
	Effort:	Scale appropriate farm mechanization solutions, especially for			
		smallholder farmers, and precision water and nutrient management			
		practices. Develop climate-smart villages to scale up adaptation practices			
		and technologies, cross-cutting agricultural research for social and			
		gender inclusiveness across south Asia.			
	Name:	International Rice Research Institute (IRRI)			
	Effort:	Conduct research on mitigation of future climate crises by developing			
India		new cultivation practices and technologies that minimize GHG			
		emissions, enhance input-use efficiency, and predict and respond to			
		future climate threats. Work in partnership with policy makers and			
		national research and extension systems (NARES) to deliver consolidated research and education support services that will			
		improve the efficiency, sustainability, and equity of the region's			
		rice-based agrifood sector and help deliver the Sustainable			
		Development Goals (SDGs). IRRI and India have been successfully			
		collaborating for more than five decades. India has been actively			
		involved in IRRI's priority setting, strategic planning, scientific advising,			
		and implementation of research across south Asia.			

Member economy	Key international organization or NGOs, NPOs in CSA				
	Name:	International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)			
India	Effort:	ICRISAT the CGIAR institute headquartered in India has developed a pool of climate-smart technologies. A few such approaches for building climate-smart villages include: watershed management approach (improving rural livelihoods by rehabilitating natural ecosystems); futuristic multi-model approach (customizing adaptation packages to enhance climate resilience); digital technologies approach (integrating climate information and eco- conservation technologies); met-advisory and farm-systems approach (building resilience agro-ecosystems by using climate information); and the climate- and crop-modelling approach (cropping advisories based on seasonal forecasts).			
Indonesia	Not indi	cated			
	Name:	CIMYT, ACIAR, FAO, and ICARDA			
	Effort:	Contribute to promoting CSA practices and securing funding for promoting climate-smart agriculture in Pakistan			
	Name:	JICA, SWISS Interoperation-Helvitas, and ICIMOD			
Pakistan	Effort:	Support in arranging funding and skill development related to climate- change mitigation and adaptation and a few more projects are in the pipeline.			
	Name:	GIZ Germany and CITEFA France			
	Effort:	Contribute to research and development projects related to GHG emission reduction and promote climate-smart agricultural practices in Pakistan.			
	Name:	International Rice Research Institute (IRRI)			
	Effort:	IRRI has been at the forefront of developing and promoting climate- resilient rice varieties to withstand various climate-related challenges, including drought, flood, and temperature extremes while improving yield stability and food security. It also conducts research to reduce CH ₄ emissions from rice fields and is a pioneering organization in the research and development of AWD, which is a widely known water-saving technique in Asia.			
	Name:	Green Climate Fund (GCF)			
The Philippines	Effort:	The GCF is an international fund designed to aid developing nations in addressing the impacts of climate change. It assists these countries in mitigating their GHG emissions and adapt to climate-change effects.			
	Name:	Asian Development Bank (ADB)			
	Effort:	The ADB funds projects related to climate-smart agriculture in the Philippines, aiming to enhance the resilience of agricultural systems, reduce emissions, and increase the efficiency of resource use. It provides policy-based loans for the Climate Change Action Program in support of the Government of the Philippines for the implementation of its national climate policies, including its Nationally Determined Contribution that is projected to have a peak emission by 2030, and reduction in GHG emissions by 75% from business as usual, with a just transition to an inclusive, low-carbon, and climate- and disaster-resilient economy.			

Member economy	Key international organization or NGOs, NPOs in CSA		
The ROK	Not indicated		
	Name: GIZ		
Thailand	Name: FAO		
	Name: The World Bank		

Summary of First and Second Survey Results

Results of the first and second surveys can be summarized as follows:

- In most of the member economies, methane emissions from paddy soils and nitrous oxide emissions from managed land account for a significant proportion of GHG emissions from the agricultural sector.
- All the eight member economies participating in the surveys already have various policies and scientific bases that support climate-change mitigation and adaptation in agriculture. Many of the policies target multiple benefits, including higher crop production with reduced GHG emissions and inputs (water and nutrients).
- There are only three member economies, the ROC, the ROK, and Thailand, that already have national carbon credit trading mechanisms or voluntary emission reduction programs for the agricultural sector.
- All the eight member economies are participating in various international carbon credit trading mechanisms. Specifically, Thailand is participating in all international carbon credit trading mechanisms (CDM, VCS, GS, Puro Earth, JCM, and Klik) listed in the survey.
- There are four member economies, namely, Indonesia, the ROC, the ROK, and Thailand, that have both MRV and VVB.
- All the eight member economies have given high scores to the importance of all CSA technologies developed by the COE on CSA.
- All the eight member economies have most of the important data needed for implementing all CSA technologies developed by the COE on CSA. Some member economies already have similar or advanced systems for climate information services.

Results of the Third Survey

The third survey was conducted via e-mail from 21 November 2023 to 5 December 2023. In the survey, eight national resource persons from eight member economies were requested to fill out the "Priority Sheet" with priority CSA technologies and specific topics; possible collaborations with the COE on CSA; and challenges to be addressed or overcome for the pilot projects. India and the ROK have listed one priority CSA technology and topic each; Indonesia has listed two priority

CSA technologies and topics; Bangladesh, the ROC, and Thailand have listed four priority CSA technologies and topics each; and the Philippines and Pakistan have listed six and seven priority CSA technologies and topics, respectively. The top 2 priority CSA technologies, topics, and challenges to be addressed or overcome, and possible collaborations with the COE on CSA in the eight member economies, are listed in Tables 10–17.

TABLE 10

BANGLADESH'S TOP 2 PRIORITY CSA TECHNOLOGIES, CHALLENGES, AND POSSIBLE COLLABORATIONS WITH THE COE.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaboration with the COE on CSA
 Qualification of soil carbon stock, carbon credit, and GHG emissions 	 Challenges: (1) Lack of carbon sequestration visualization tool (2) Lack of technical and financial support (3) Lack of proper methodology for calculating carbon credit 	Determination of soil carbon sequestration, GHG emissions, and carbon credit through carbon sequestration visualization tool with
	 Possible measures: (1) Availability of carbon sequestration visualization tool (2) Ensuring technical and financial support (3) Training 	soil and water management.
(2) Mitigation of GHG emissions from rice fields	 Challenges: (1) Fixed seasonal contract between the pump owner and the farmer (2) Lack of technical and financial support (3) Lack of farmers awareness Possible measures: 	Mitigation of methane and nitrous oxide emissions from rice fields through mid- season drainage.
	 (1) Ensuring technical and financial support (2) Training for farmers and extension workers (3) Ensuring farmer incentives (4) Government intervention (5) Field demonstration 	

TABLE 11

THE ROC'S TOP 2 PRIORITY CSA TECHNOLOGIES, CHALLENGES, AND POSSIBLE COLLABORATIONS WITH THE COE.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
(1) Quantification of	Challenges:	Determination of soil
soil carbon	(1) Lack of carbon sequestration visualization tool	carbon sequestration,
sequestration.	(2) Lack of technical and financial support	GHG emissions, and
	(3) Lack of proper methodology for calculating	carbon credit through
	carbon credit	carbon sequestration
		visualization tools
	Possible measures:	
	(1) Availability of carbon sequestration	
	visualization tools	
	(2) Ensuring technical and financial support	
	(3) Government support	
		(Continued on next page)

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
(2) Soil carbon sequestration	Challenges: Lack of technical and financial support Possible measures: (1) Ensuring technical and financial support (2) Training for farmers' motivation (3) Government support	 Increase soil carbon sequestration and improve soil fertility through biochar or other nutrient solution amendment. Increase the amount of carbon captured by plants and increase crop yields through nutrient solution amendment.

TABLE 12

INDIA'S TOP 2 PRIORITY CSA TECHNOLOGIES, CHALLENGES, AND POSSIBLE COLLABORATIONS WITH THE COE.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
(1) Soil carbon sequestration visualization and carbon credit methodology	Carbon sequestration potential of long-term crop residue incorporation or organic farming/ regenerative farming in tropical environments like India and the methodology to be used for carbon credits to farmers	A tool to quantify the effects of soil and water management on soil carbon and GHG emissions such as carbon dioxide, methane and nitrous oxide emissions. Methodologies to utilize these effects for carbon crediting.
(2) N/A	N/A	N/A

TABLE 13

INDONESIA'S TOP 2 PRIORITY CSA TECHNOLOGIES, CHALLENGES, AND POSSIBLE COLLABORATION WITH THE COE.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
(1) Methane emission reductions by water management	 Irrigation water management is managed by different departments, so the synergy is needed between water managers and water users (farmers) for irrigation channels at the tertiary level Farmers have difficulty in getting sufficient water distribution for paddy fields at the tertiary and quaternary levels because many of water channels are damaged Farmers have different perceptions to accept/apply a new method or application Farmer awareness on CSA application- related AWD technologies could increase the 	 Water management systems can be applied by water stakeholders (water managers and water users) at the tertiary level. Water management technology alternatives can be adopted and applied by farmers to support methane emission reductions in paddy fields Disseminate and apply the AWD technology effectively
	productivity and reduce methane emissions	and massively for paddy fields.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
(2) Soil carbon sequestration	 It is relatively difficult to implement biochar to paddy fields (a big capacity of biochar is needed in paddy fields and geographies) Farmers have different perceptions to accept/apply a new method/application Farmers' awareness on CSA application- related biochar technology could increase the productivity and reduce methane emission 	 The biochar technology application can be adopted and applied by farmers easily. Carbon measurement mechanism-related carbon credits from biochar can be applied in paddy fields.

TABLE 14

PAKISTAN'S TOP 2 PRIORITY CSA TECHNOLOGIES, CHALLENGES, AND POSSIBLE COLLABORATIONS WITH THE COE.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA		
(1) Methane emission reductions in paddy fields through water management	Operationalization of available gas chromatography equipment, training on data collection and testing, and accessories provisioning and resources for field execution	Piloting of mid-season drainage for identifying methane emission reduction potential compared with conventional prolonged standing water on farmers' fields and subsequent carbon credit projects		
(2) Soil carbon sequestration	Biochar production technology availability, trained manpower, field execution of research, and development activities on biochar production	Piloting of biochar production technology for rice straws and husks in rice-growing areas and subsequent project development for carbon credit earning		

TABLE 15

THE PHILIPPINES' TOP 2 PRIORITY CSA TECHNOLOGIES, CHALLENGES, AND POSSIBLE COLLABORATIONS WITH THE COE.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
(1) Methane emission reductions in	(1) Methane emissions monitoring,	Introduction of mid-season drainage (MSD) with extension as alternative to AWD (more complicated to implement than MSD). It may facilitate faster adoption of MSD.
paddy fields through water management	reporting, and validation (MRV) (2) Lack of gas	Capacity building to address the limited competent experts on MSD, AWD.
	chromatograph for gas analysis (3) Availability and	Methodologies to quantify the effects of soil and water management for carbon crediting.
	access to satellite data	Additional training for gas analysis and measurements.
		Linking/partnership with JAXA for the access of satellite data.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
(2) Climate	(1) More frequent	Capacity building on the use of Grid-square Data Systems of
information	forecasts and	Agromet Traits.
service	higher resolution (2) Access to satellite data	Adoption of the system for Philippine condition and use for forecasts, specifically rice yield for improvement of PAGASA forecast and PRiSM yield forecasts.

TABLE 16

THE ROK'S TOP 2 PRIORITY CSA TECHNOLOGIES, CHALLENGES, AND POSSIBLE COLLABORATIONS WITH THE COE.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
(1) Soil carbon sequestration visualization and carbon credit methodology	Create a GHG emissions calculation platform that can be easily used by all citizens.	Learn from the COE on CSA about the operating principles of GHG emissions calculation website currently used by the COE and create a GHG emissions calculation platform that can be
(2) N/A	N/A	used in the ROK. N/A

TABLE 17

THAILAND'S TOP 2 PRIORITY CSA TECHNOLOGIES, CHALLENGES, AND POSSIBLE COLLABORATIONS WITH THE COE.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
 (1) Soil carbon sequestration visualization and carbon credit methodology 	Develop the guidelines in economic crops production to get carbon credit for T-VER. Develop guidelines to support GHG emission reductions in the agricultural sector to be recognized both at national and international levels. Develop standard methodology for baselining for	Transfer or develop a tool to quantify the effects of soil and water management on soil carbon and GHG emissions/specific carbon credit methodology in
	GHG emission reductions in the agricultural sector for major economic crops.	agriculture for Thailand or T-VER.
	Develop operational guidelines for obtaining carbon credit certification for crops in farming communities and the private sector.	Develop a tool to quantify the effects of soil and water management on soil carbon and GHG emissions
	Scale up carbon credits schemes in the agricultural sector at both national and regional levels.	at national and regional levels.

Top 2 priority CSA technologies and topics	Challenges to be addressed or overcome	Possible collaborations with the COE on CSA
(2) Soil carbon sequestration	Develop a practical biochar production mechanism to decrease global warming and reduce burning from agriculture waste (rice, maize, sugarcane, etc.).	Biochar production and application to utilize (unutilized) organic materials and transform them, and obtain carbon credit.

Summary of the Third Survey Results

Results of the third survey can be summarized as follows:

- Five out of eight member economies (Bangladesh, India, ROC, ROK, and Thailand) have noted "Soil Carbon Sequestration Visualization and Carbon Credit Methodology" as their top priority.
- A possible pilot project regarding "Soil Carbon Sequestration Visualization and Carbon Credit Methodology" includes developing a soil carbon sequestration visualization tool to quantify the effects of biochar application and water management as well as developing and utilizing related methodologies to quantify the effects of biochar application and water management for carbon crediting.
- On the other hand, Pakistan, Indonesia, and the Philippines have stated "methane emission reductions in paddy fields through water management" as their top priority.
- A possible pilot project on "methane emission reductions in paddy fields through water management" includes implementing mid-season drainage (MSD) or prolonged MSD to support methane emission reductions from paddy soils as well as developing and utilizing related methodologies to quantify the effects of water management for carbon crediting.

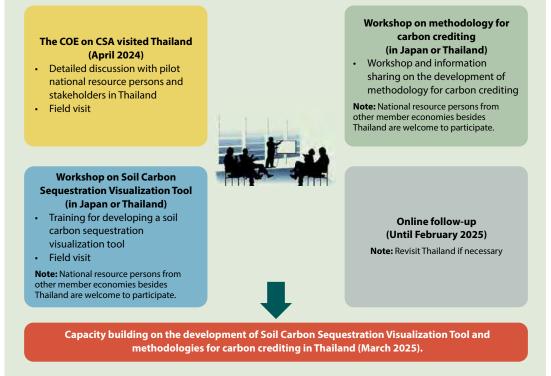
PILOT PROJECT IN 2024

Target CSA Technology and Target Member Economy for a Pilot Project in 2024

One of the main activities of the COE on CSA in 2024 is to implement a pilot project in the APO member economy that has the greatest readiness for implementing CSA technologies developed by the COE on CSA. The survey conducted by the COE on CSA in eight member economies revealed that "Soil Carbon Sequestration Visualization and Carbon Credit Methodology" received the highest priority, as indicated by five member economies (Bangladesh, India, ROC, ROK, and Thailand). Therefore, the COE has decided to select "Soil Carbon Sequestration Visualization and Carbon Credit Methodology" as the target CSA technology for a pilot project in 2024.

In the survey, five member economies (Bangladesh, India, ROC, ROK, and Thailand) mentioned that a possible pilot project on "Soil Carbon Sequestration Visualization and Carbon Credit Methodology" includes developing soil carbon sequestration visualization tools to quantify the effects of biochar application and water management as well as to develop and utilize related methodologies to quantify the effects of biochar application and water management for carbon crediting. The COE has decided to select Thailand as the target member economy for a pilot project in 2024 based on the following reasons:

- Thailand has most of the important data needed for implementing and developing "Soil Carbon Sequestration Visualization and Carbon Credit Methodology." Soil map data and meteorological data are particularly extensive.
- Thailand already has a national carbon credit system called T-VER, which is similar to J-Credit, a national carbon credit system of Japan. It would be possible for the COE on CSA to transfer carbon credit methodologies of J-credit, such as the methodology regarding biochar addition, to T-VER.
- The Thai government is making efforts to promote the application of biochar.
- The Thai government has a solid policy, the "Agricultural Action Plan for climate change 2023–27," for tackling climate change challenges in the agricultural sector.


Goal of the Pilot Project in 2024 in Thailand and Planned Activities of the COE on CSA

The goal of the pilot project in 2024 is to build capacities of national resource persons and stakeholders in Thailand to enable the development of a Soil Carbon Sequestration Visualization Tool and the methodologies for carbon crediting.

The planned activities of the COE on CSA for the pilot project in 2024 in Thailand are shown in Figure 1. In April 2024, resource persons affiliated with the COE on CSA and working on "Soil Carbon Sequestration Visualization and Carbon Credit Methodology" will visit national resource

FIGURE 1

GOAL OF A PILOT PROJECT IN 2024 IN THAILAND AND PLANNED ACTIVITIES OF THE COE ON CSA.

persons and stakeholders in Thailand for detailed discussions, in-depth interviews, and field visits, to develop project details. To build capacities of national resource persons and stakeholders, two workshops are being planned. One workshop will be on the Soil Carbon Sequestration Visualization Tool, while the other workshop will be on methodologies for carbon crediting. In both the workshops, national resource persons from other member economies besides Thailand are welcome to participate. Online preparatory and follow-up are also planned. If necessary, resource persons affiliated with the COE on CSA will revisit national resource persons in Thailand.

REFERENCES

- FAO. Greenhouse gas emissions from agrifood systems: Global, regional, and country trends, 2000–2020, FAO FAOSTAT Analytical Brief 50; 2022. https://www.fao.org/3/ cc2672en/cc2672en.pdf (last accessed on 24 July 2024)
- [2] Asian Productivity Organization. https://www.apo-tokyo.org/centers-of-excellence/ (last accessed on 24 July 2024)

BIBLIOGRAPHY

- [1] Agricultural and Rural Voluntary GHG Reduction Project, Korea (in Korean). http://uni. agrix.go.kr/docs7/customizedNew/introduce/IntroduceMain.do
- [2] Agricultural Instruments Standardization Agency (BSIP), The Ministry of Agriculture, Indonesia (in Indonesian). https://bsip.pertanian.go.id/layanan/layanan-lainnya/katamterpadu-sc
- [3] Agrometeorological Observation Network, ROC (in Chinese). https://agr.cwa.gov.tw/NAGR
- [4] Akbar G., Islam Z., Umar M., et al. Water Productivity of furrow, drip and flood irrigated rice under loam soil. Sarhad Journal of Agriculture 2022; 38(5): 87–95. https://doi. org/10.17582/journal.sja/2022/38.5.95.103
- [5] Akbar G., Islam Z., Hameed S. et al. Yield and water productivity of rice as influenced by responsive drip irrigation, alternate wetting and drying versus conventional flooding under silty loam soil texture. Water resources and irrigation management 2022; 12(1–3): 1–13.
- [6] All India Coordinated Research Project on Long-Term Fertilizer Experiments (ACRIP-LTFE). https://aicrp.icar.gov.in/ltfe/
- [7] Central Bureau of Statistics, Indonesia. Harvest Area and Rice Production in Indonesia (in Indonesian); 2022 https://www.bps.go.id/pressrelease/2023/03/01/2036/
- [8] Central Weather Administration, ROC. https://www.cwa.gov.tw/eng/
- [9] Department of Agriculture and Farmers Welfare, MoA, India. https://slusi.dacnet.nic.in/ index_English.html
- [10] FAO. Greenhouse gas emissions from agrifood systems: Global, regional, and country trends, 2000–2020. FAO FAOSTAT Analytical Brief 50; 2022. https://www.fao.org/3/ cc2672en/cc2672en.pdf
- [11] FFTC Agricultural Policy Platform. Policy Support and Processes for Institutionalizing Organic Agriculture (OA) in the Philippines, some evidence, and challenges; 2019. https:// ap.fftc.org.tw/article/1394
- [12] Geo-Informatics and Space Technology Development Agency, Thailand. https://www.gistda. or.th/news_view.php?n_id=2408&lang=EN
- [13] Greenhouse mitigation Mechanism, Thailand. https://ghgreduction.tgo.or.th/th/tver-method/ t-ver-classify-methodology/

- [14] Indian Meteorological Department, Pune. https://cdsp.imdpune.gov.in/
- [15] Indonesian Fertilizer Manufacturer Associations (APPI). https://www.appi.or.id/
- [16] Indonesian National Carbon Accounting System (INCAS). http://incas.menlhk.go.id/id/ https://www.cifor.org/knowledge/project/PMO-0867
- [17] Meteorology, Climatology and Geophysics Agency (BMKG), Indonesia. https://www.bmkg. go.id/profil/stasiun-upt.bmkg
- [18] Ministry of Energy and Mineral Resources, Republic of Indonesia (in Indonesian). https:// www.esdm.go.id/id/media-center/arsip-berita/menteri-esdm-luncurkankarbon-subsektor-pembangkit-listrik
- [19] NARO, Institute for Agro-Environmental Sciences; 2018. https://tinyurl.com/ MRVHandbookonAWD
- [20] National Accreditation Committee (KAN), Indonesia (in Indonesian). https://kan.or.id/
- [21] National GHG Registration Platform, ROC (in Chinese). https://ghgregistry.moenv.gov.tw/ ghg_New/
- [22] Pakistan Meteorological Department. https://www.pmd.gov.pk/en/
- [23] Pakistan Space and Upper Atmosphere Research Commission (SUPARCO). https://suparco. gov.pk/products-services/agriculture/
- [24] Philippine Rice Information System (PRiSM). https://prism.philrice.gov.ph/
- [25] Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA). https://www.pagasa.dost.gov.ph/
- [26] REDD+ Result Based Payment (RBP) INDONESIA (2020), (in Indonesian). https://www.gcftf.org/wp-content/uploads/2020/12/RBP_Booklet_20200512_IND.pdf https://jdih.menlhk.go.id/new/uploads/files/2022pmlhk021_menlhk_10252022143318.pdf
- [27] Smarter Approaches to Reinvigorate Agriculture as an Industry in the Philippines (SARAI). https://sarai.ph/
- [28] Soil Science and Plant Nutrition. Effects of Alternate Wetting and Drying technique on GHG emissions from irrigated rice paddy in Central Luzon, Philippines; 2018. https://doi. org/10.1080/00380768.2017.1401906
- [29] The ROC Carbon Solution Exchange. https://www.tcx.com.tw/en/index.html
- [30] The ROC Soil Survey Geographic Database. https://tssurgo.tari.gov.tw/Tssurgo/
- [31] Thai Meteorological Department. https://tmd.go.th/en/

- [32] Thailand Greenhouse Gas Management Organization (TGO). https://www.tgo.or.th/2020/ index.php/en/
- [33] The Future and Prospect of Biochar for Agricultural waste preparation in the ROC (in Chinese). http://www.biotaiwan.org.tw/image_doc/46/04 臺灣農業廢棄物製備生物炭之未 來與展望.pdf
- [34] UNFCCC. National Greenhouse Gas Emissions Inventory Report, the ROC (in Chinese) ; 2022. https://unfccc.saveoursky.org.tw/nir/tw_nir_2022.php
- [35] UNFCCC. Standardized Baseline for CH4 Emissions in Rice Cultivation in the Republic of the Philippines. https://cdm.unfccc.int/methodologies/standard_base/2015/sb175.html
- [36] Yijian W., Husheng L. Life cycle and carbon footprint environmental impact assessment of rice production, (in Chinese). https://www.moa.gov.tw/ws.php?id=21045 https://www. hdares.gov.tw/upload/hdares/files/web_structure/12696/3-3.pdf

nternational Conference on Climate-smart Presentation slides of 8 national resource persons from 8 member economies for M Agriculture on 9 November 202

BANGLADESH

NDC 2021 and BUR-1	Nationally Determined Contribution (NDC) 2021	 Bangladesh contribute 169.05 MT CO₂ eq GHG globally ➤ Energy sector (93.09 MT CO₂ eq) is the largest contributor to total GHG emissions ➤ Agriculture and livestock contribute 46.24 MT CO₂ eq GHG (27% of total emission) 	Under the BAU scenario, total GHG emission would increase from 169.05 MT to	 409.4 MT CO₂ eq by 2030. ▶ It is expected to reduce CH₄ emissions by 17% in 2030 than BAU scenarios. 	Biennial Update Report-1 (BUR-1)	 CHG emissions from agriculture (61,865 Gg CO₂eq in 2019) CH4 emissions from rice soils (15,239 Gg CO₂eq in 2019) 	▶ N2O emission from both direct and indirect emissions (8098 Gg CO ₂ eq in 2019)
	Nationally	angladesh Energy se	Under the	409.4 MT C It is expec	Biennial U	GHG emis	N20 emis

Survey activities	ient polices to reduce CH4 emissions-	nination of AWD	ced fertilization/Fertilizer deep placement	Integrated nutrient management	Develop and disseminate climate-smart rice varieties	Implement precision and conservation agriculture	equestration and carbon credit mechanism?	Carbon sequestration or C sequestration visualization tool?	Limitation: high costs, low yield, organic amendment, biochar.	Solution: Projects, Training, Incentive, and Demonstration	
	Government polices to	 Dissemination of AWD 	Balanced fertilization/	Integrated nutr	Develop and di	Implement pred	Carbon sequestration and	Carbon sequest	 Limitation: hi 	< Solution: Proj	

Survey activities Methodology for calculating and reporting the reduction of methane emissions from paddy soils by water management practice in your country

Why alternate wetting and drying irrigation?

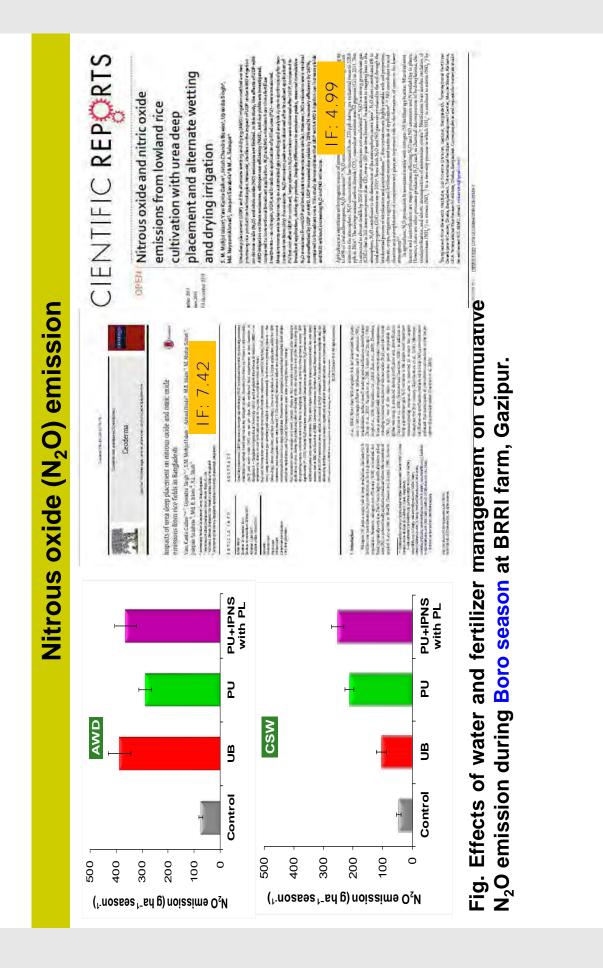
- It improves WUE (saves 4-5 numbers of irrigation)
- It saves 25-30% fuel cost
- It does not decrease rice yield
- It increases FUE
- It improves rice root morphology, physiology
- It enhances soil urease activity
- ♦ It increase O₂ conc.
- It increases NO⁻³ content in rhizosphere soil
- It reduces grain As and Pb concentration
- It is carbon-friendly technology

Farmers' perception about AWD

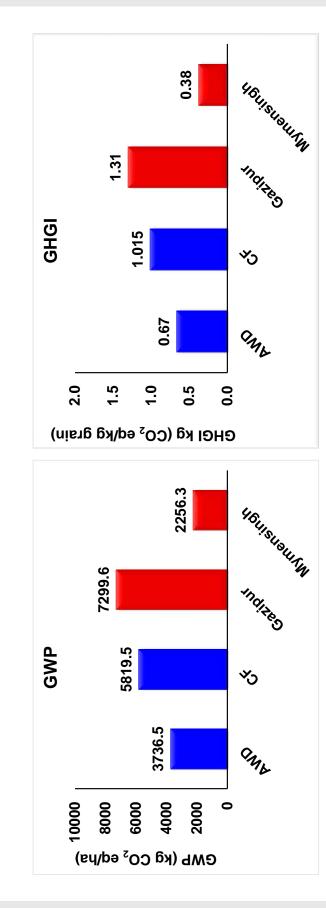
- Yield increase about 15 to 20%
- It saves 4-5 number of irrigation Δ
 - It is cost effective

Suggestions offered by th

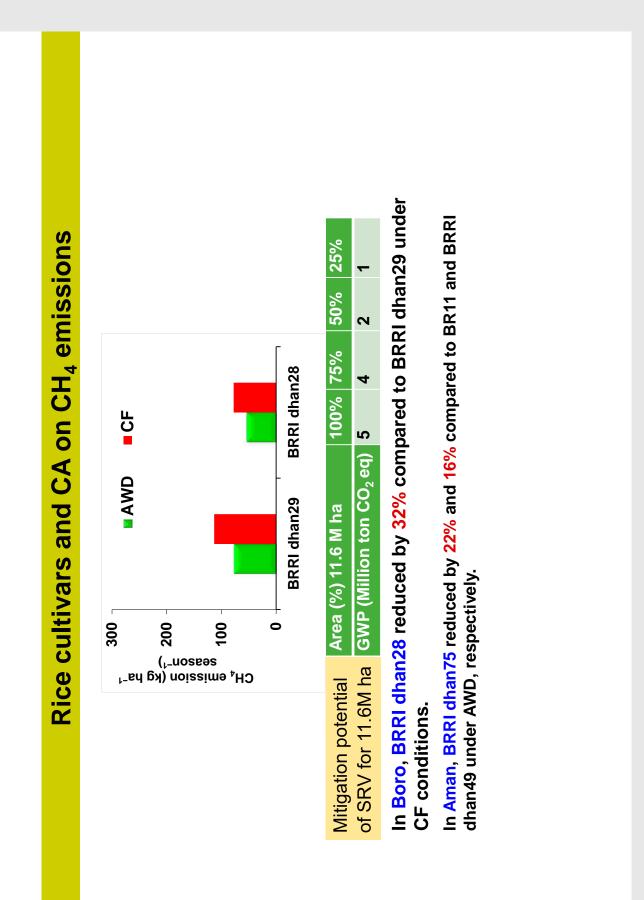
- Water pricing/fixed seasd
 - Knowledge gap/Training ٨
 - Media coverage Δ
 - Incentive Δ
- **Government intervention** Δ



CH₄ and N₂O gas measurement


- Closed gas chamber technique
- Gas sampling was done once a week at 15 min interval (0,15 and 30 min) *
- Gas concentration was measured using GC Analyzer equipped with FID and ECD *
- Emission rates were determined from the slope of the linear regression curve of CH₄ or N₂O concentration against the chamber closing time. *

The effects of fertilizer × water regimes on rice yield, total nitrogen uptake (TNU) and recovery The effects of fertilizer × water regimes on rice yield, tha ⁻¹) The War Control NU (Kg ha ⁻¹) The War	efficiency of N (RE _N) in the Boro (dry) season. Year Fertilizer Grain yield (t ha ⁻¹) TNU (kg ha ⁻¹) RE _N (%) Year Fertilizer Grain yield (t ha ⁻¹) TNU (kg ha ⁻¹) RE _N (%) Year Mean of 2 water Mean of 2 water Mean of 2 water Mean of 2 Fertilizer and water regimes regimes regimes water regimes water regimes Mean Control-N0 2.79c 34.70d - - PU-N78 5.88a 99.07a 82.55a 69.4b Mean A.75A 72.81B 76.20A 66.3A 69.8A Mean Mean AND CF AND AND AND Mean Mean A.132A 72.81B 76.20A 66.3A 69.8A ANOVA (p values) Mean 0.1172 0.0000
The Boro (dry) season.Ithe Boro (dry) season.Frain yield (t ha ⁻¹) TNU (kg ha ⁻¹)Alean of 2 waterAlean of 2 water </th <th>ncy of N (RE_N) in the Boro (dry) season.FertilizerGrain yield (t ha⁻¹)TNU (kg ha⁻¹)managementMean of 2 waterMean of 2 waterregimesregimesregimesrr and water regimesinteraction34.70dst and water regimes5.88a99.07aPU-N785.88a99.07aPU-N785.60a88.84bPU-N784.86b75.41cPU-N785.60a88.84bof water regimesAWDCFAwater regimesAWDCFOf water regimes (W)0.13820.0200of water regimes (W)0.13820.01172of water regimes (W)0.13820.0132of of water regimes (W)0.11720.0132of of water regimes (W)0.00000.0132of of values)0.04420.0132of 0.04420.01320.0132</th>	ncy of N (RE _N) in the Boro (dry) season.FertilizerGrain yield (t ha ⁻¹)TNU (kg ha ⁻¹)managementMean of 2 waterMean of 2 waterregimesregimesregimesrr and water regimesinteraction34.70dst and water regimes5.88a99.07aPU-N785.88a99.07aPU-N785.60a88.84bPU-N784.86b75.41cPU-N785.60a88.84bof water regimesAWDCFAwater regimesAWDCFOf water regimes (W)0.13820.0200of water regimes (W)0.13820.01172of water regimes (W)0.13820.0132of of water regimes (W)0.11720.0132of of water regimes (W)0.00000.0132of of values)0.04420.0132of 0.04420.01320.0132
1 the Boro (dry Stain yield (t ha⁻¹) Aean of 2 water egimes interaction 1.79c 1.79c 1.79c 1.79c 1.79c 1.79c 1.79c 1.79c 1.79c 1.75A 1.82A 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382 1.1382	Incy of N (REN) in the Boro (dry)FertilizerGrain yield (t ha ⁻¹)managementMean of 2 watermanagementMean of 2 waterr and water regimes interactionregimesr and water regimes interaction2.79cControl-N02.79cUDP-N785.88aPU-N785.60aPU-N785.60aPU-N784.86bPNS-N785.60aPU-N784.82APU-N780.796PU-N780.1382PU-N780.1382PU-N780.1382PU-N780.1382PU-N780.0000PU-N78 <t< th=""></t<>
	efficiency of N (RE _N) in Year Fertilizer management Fertilizer and water regimes Mean Control-N0 PU-N78 P



Global warming potential and Greenhouse gas intensity

Steme of the Total Environment	Effects of water management on greenhouse gas emissions from tarmers'			INTERPORT INTERPORT INTERPORT INTERPORT INTERPORT INTERPORT INTERPORT INTERPORT 	
	Effects of water manage for fields in floorjaate S.M. Methol Jatan - Yaan V Upenito Saipt - Riteon De Upenito Saipt - Riteon De		A first frequencies of the second sec	A 1171 (LV - MLE) method in the second seco	
Mitigation potential of AWD for 4 8 M ha	Area GWP (MT (%) CO ₂ eq/	100% 9		CF during Boro (
			AWD	emissions 37% com	
	ton (kg	simə ₄ H səz 6 6	e ID	AWD reduce season	

	amini in promi in amini in promi in dournal of Environmental Management interesting	Mitigating greenhouse gas emissions from trigated rise cultivation through improved features and water management. S. M. Mogul Idam *, Yan Kana Galer's MA Ringul Idam *, M. Noyem Manata *, Terrar S. M. Mogul Idam *, S. M. Mogul Idam *, M. Mog	The second secon	The second seco	to the second	The fract interact of a outform the state of a outform the state of a state outform the state outform	$ \begin{array}{c} \label{eq:constraints} (100) \mbox{ logarity} (100) l$	
UDP on CH₄ emissions	Mitigation potential of UDP for 11.6M	ha Area GWP (M (%) ton CO ₂ ed)	100% 8	75% 6	50% 4	25% 2	UDP significantly reduced cumulative CH ₄ emissions by <u>9% and 15 under AWD</u> irrigation, and <u>9% and 11% under CF</u> condition comparto PU and IPNS treatments, respectively	-
on CH₄ €	CF	⊦- ⊦ <mark>-</mark>				IPNS	H ₄ emissior Inder CF co	
UDP (■ AWD	H H				PU	nulative Ch and 11% u spectively	-
		н	H <mark>H</mark>			UDP	luced cur), and <mark>9%</mark> ments, re	,
			ч	H		Control	cantly red irrigation PNS treat	
		k) noissin (^{r-} nossas 80 00 00 00 00 00 00 00 00 00 00 00 00		<u> </u>	0		UDP significantly reduced cumulative Cl under AWD irrigation, and 9% and 11% u to PU and IPNS treatments, respectively	

Effects of AWD and UDP on carbon credit

AWD 4188 1.89 68 4.8 CF 6080 - - - - UDP 5825 0.74 27 4.8 PII 6567 - - -	Treat	GWP, CO ₂ eq (kg/ha)	Carbon credit (ton CO ₂ eq reduction/ha) due to AWD	Carbon credit (US\$)	Rice cultivated area in Boro (million ha)	Total claimable amount (million US\$)
6080 - - - 5825 0.74 27 6567 - -	AWD	4188	1.89	68	4.8	305
5825 0.74 27 <u>6567</u>	CF	6080	I	•	T	•
PII 6567	UDP	5825	0.74	27	4.8	120
	PU	6567		-	F	

The US government has endorsed a 'central' estimate cost of \$36 per ton of reduction of CO₂e from rice fields

Conclusions
Nitrogen Management
UDP significantly increased rice yield compared to PU, additionally it could save N by 25-30% without any yield penalty.
UDP showed higher N ₂ O fluxes than PU in AWD conditions, while UDP greatly reduced N ₂ O fluxes over PU in CSW practice.
\bigstar UDP significantly reduced CH4 emission than PU in both irrigation regimes
Water Management
AWD practice showed comparable rice yield with CF irrigation in safe AWD principle.
Across the N mgt. AWD irrigation reduced ca. 37% GWP over CF condition.

Conclusions (Contd.....)

Carbon credit

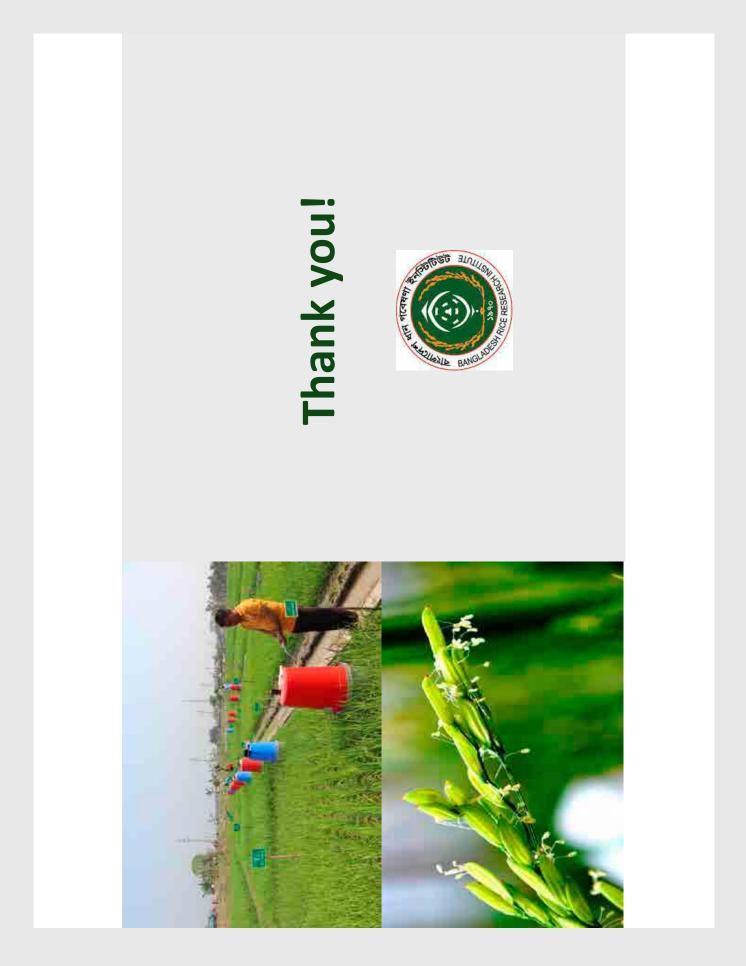
AWD irrigation might be a good option for claiming carbon credit from the global carbon market in Boro season.

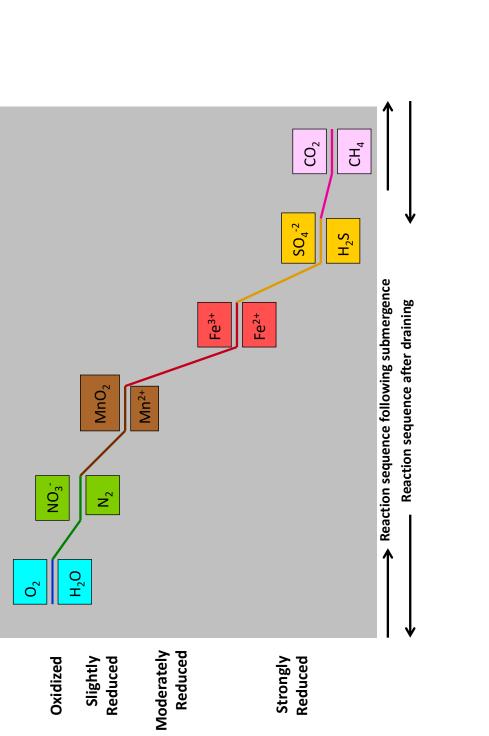
100	75% area	50% area	
			25% area
AWD 305	229	152	76
UDP 120	06	60	30

However, these observations should be checked at farmer's field of different AEZ in BD.

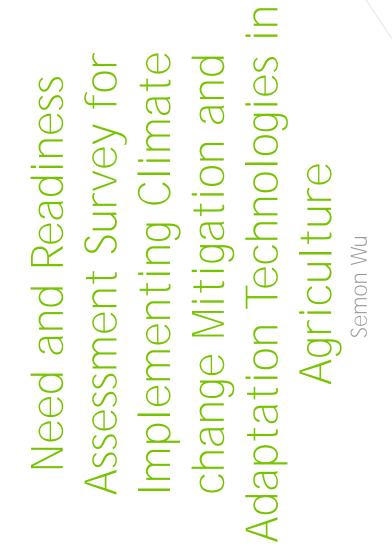
Future Research

* Modified N fertilizers like neem coated urea for increasing nutrient use efficiency and mitigation of GHG emissions from rice fields


- ↔ Quantify methane emission under varied soil conditions both in Boro and T. Aman crops throughout the country
- Screening of high-yielding rice varieties with low emitted methane emissions
- Use of household biomass ash and biochar to mitigate methane emission from rice field
- * Precision agriculture, conservation agriculture or direct-seeded rice or nanofertilizer
- Suppression of methanogenic bacteria


Citation, total IF and paper review Citation, total IF and paper review Dr. S.M. Moful Islan Citation (Citation) Dr. S.M. Moful Islan Dr. S.M. Motul Islan Distribution (Citation) Dr. S.M. Motul Islan Distribution (Citation) Distribution (Citation) Distribution (Citation) Distribution Distribution (Citation) Distritaion (Citation) Distribution (Citation
Citation, total IF and paper I Dr. S. M. Mofjul Islam Citation, total IF and paper I Dr. S. M. Mofjul Islam Nument Interesting Print Resentation
Dr. S.M. Mofijul Islam Benetadesh Rice Research Ins Verfied ermal at bringowod Greenhouse Gas Emissions water Management Agronom Activities and methods of app defensions and the anti- acts of urea deep placement on nitrous defensions and styling irrigation. Fate of nitroge fing and drying irrigation. Fate of the total end fing and drying irrigation

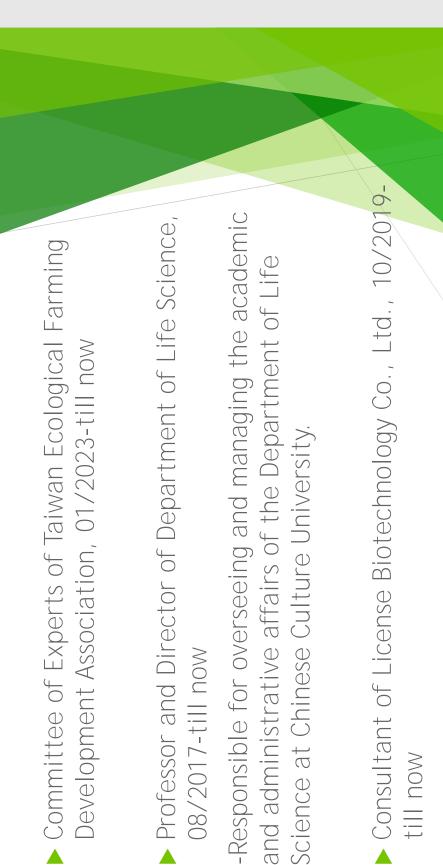
80 IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD



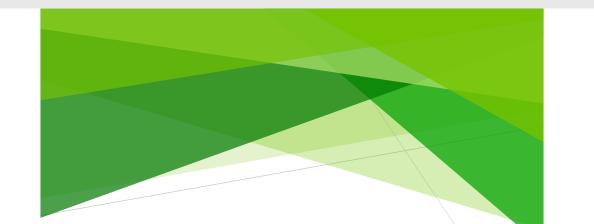
Sequence of Reduction in Soils

IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD 83

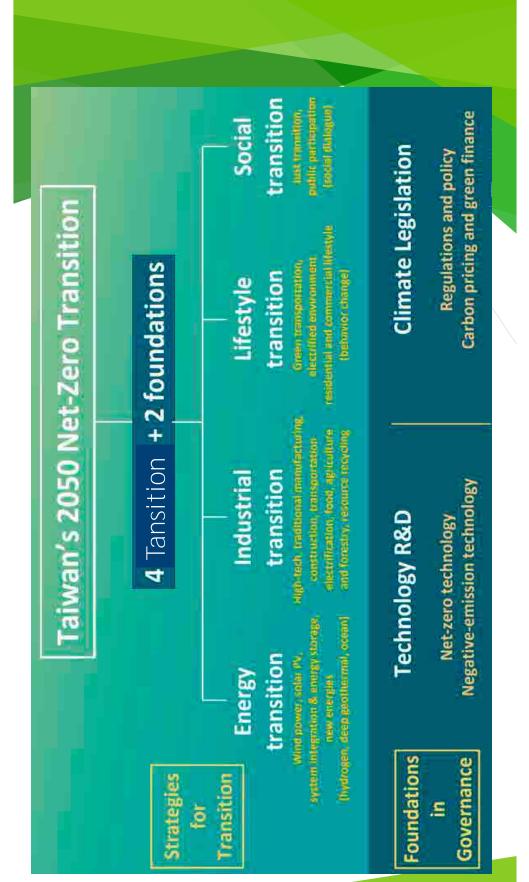
THE ROC


84 | IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD

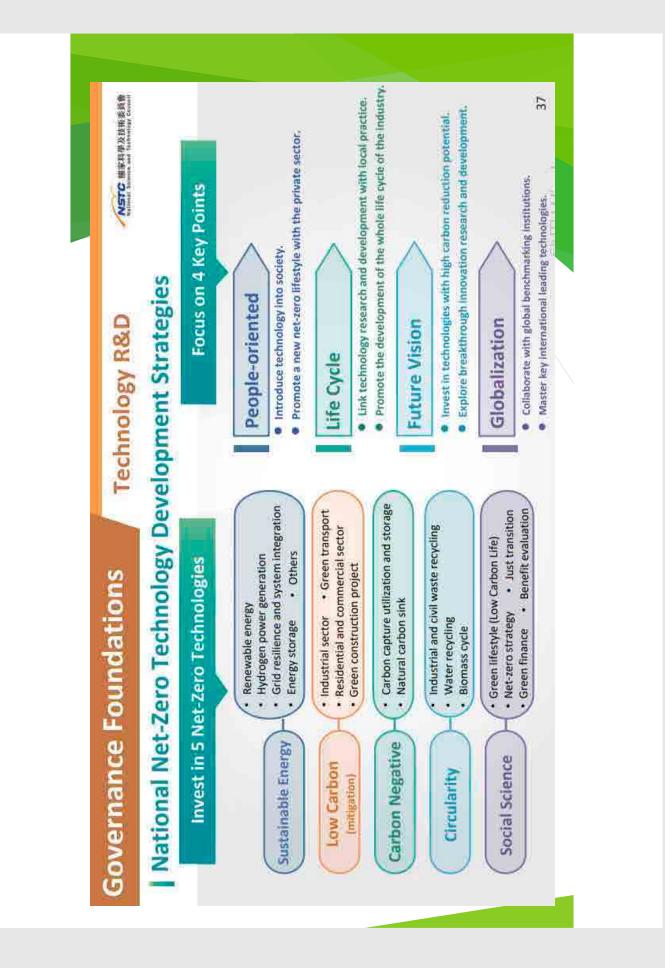
Introduction myself and Taiwan Ecological Farming Development Association Phased Goal and Actions Toward Net-Zero


Transition of Taiwan

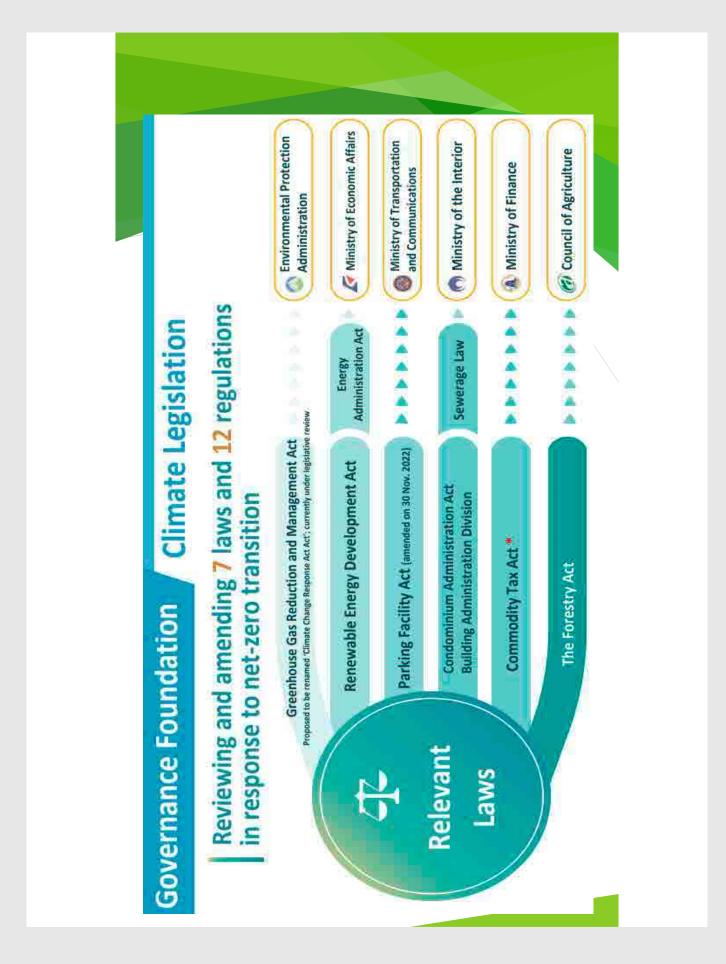
Smart Agriculture Program of Taiwan

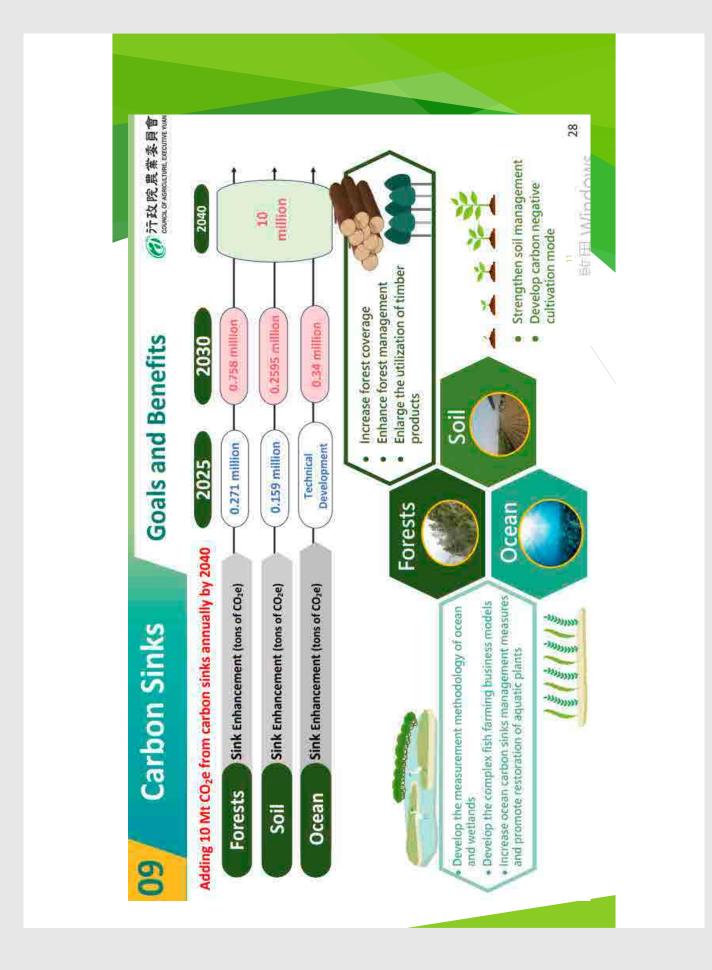

Taiwan Ecological Farming Development Association

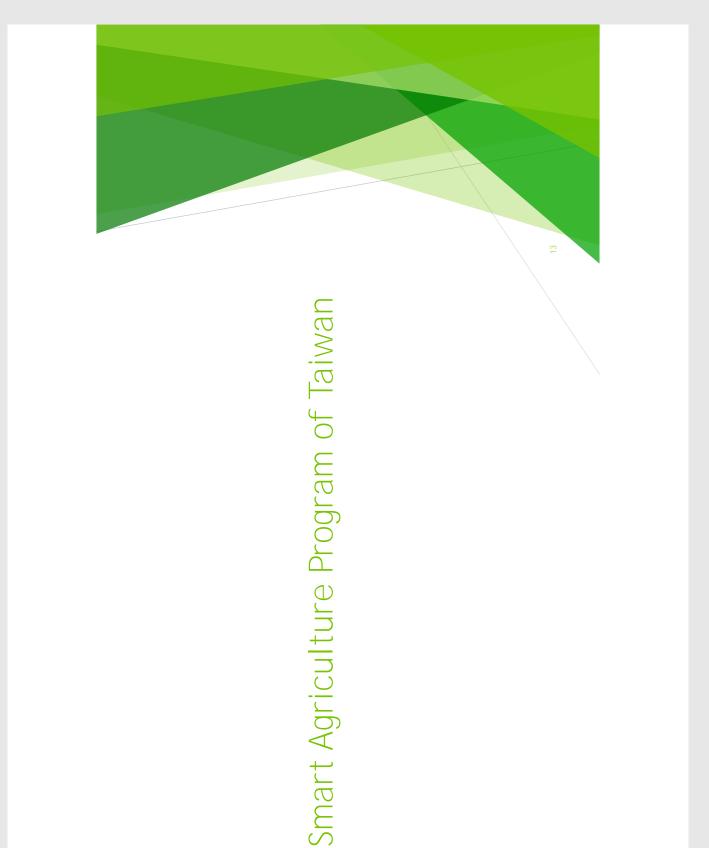
- A nonprofit organization
- Scholars and experts from public and private organization
- Provide various carbon sink measurement methods to the government
- Verification of green ecological agricultural products and agricultural product processing
- consultation (increase carbon capture and carbon sink) Provide comprehensive plant nutrition cultivation and
- Encourage farmers to adopt ecological farming

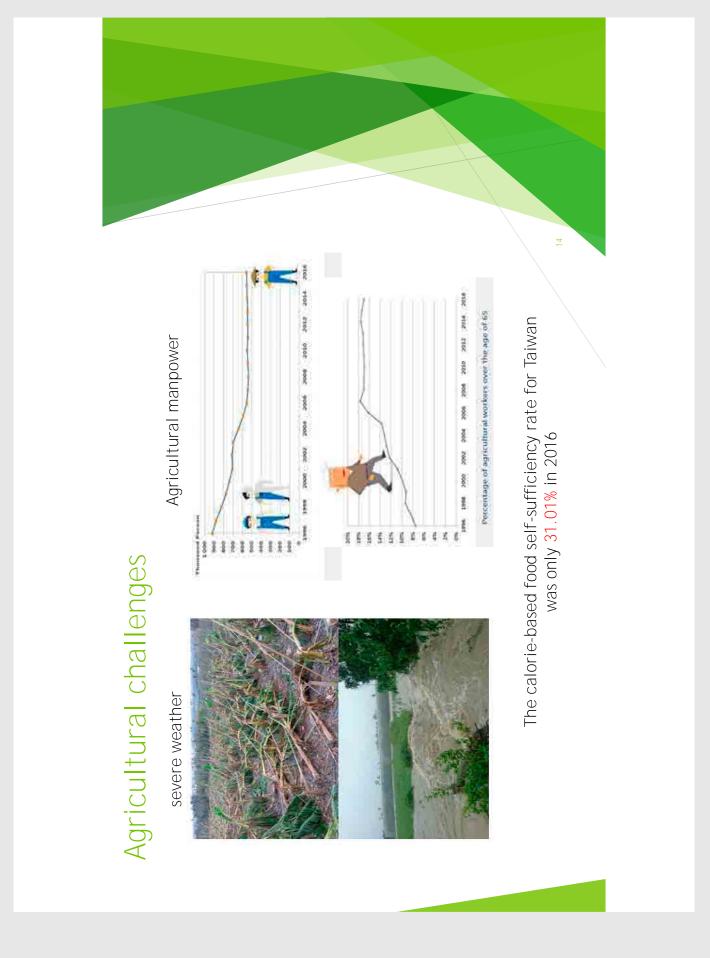


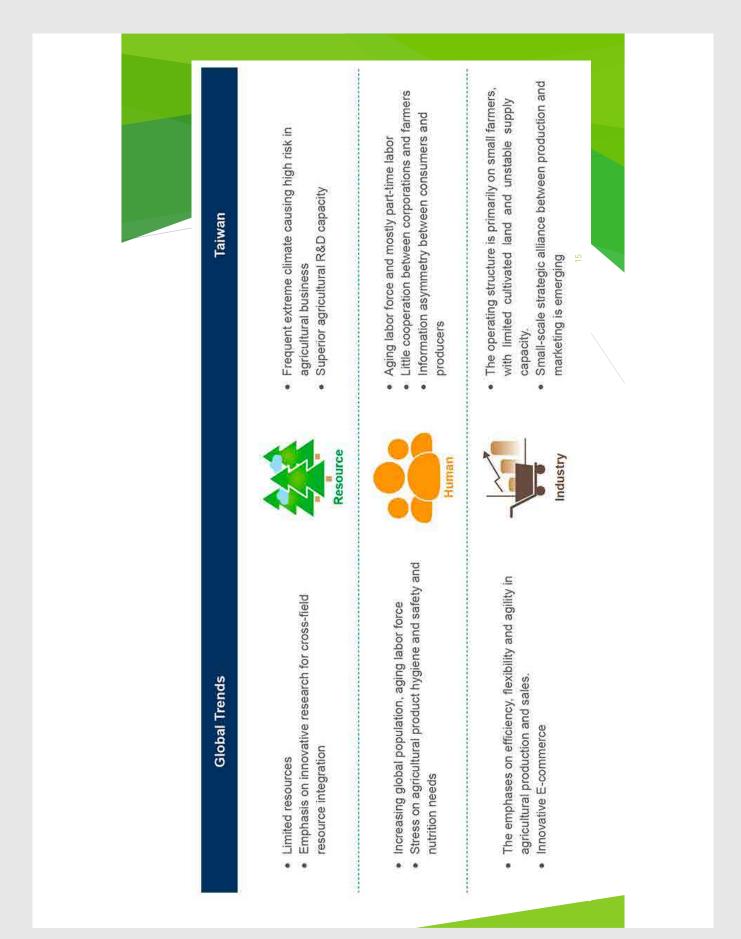
Phased Goal and Actions Toward Net-Zero Transition of Taiwan

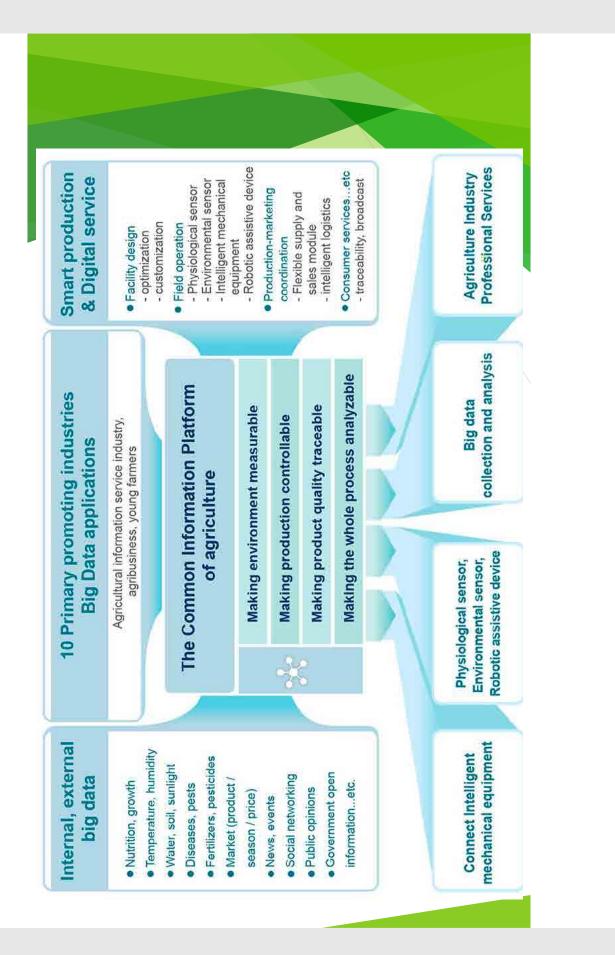





92 | IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD







The ministry of Agriculture (MOA) implements the Smart Agriculture Program with two main strategies:


- Smart Production
- Digital Service
- To systematically link up agricultural production, marketing, and consumer market
- production, optimized products, convenient operation, and tracing big data analysis, it is possible to achieve digital knowledge, smart By introducing sensors, smart devices, Internet of Things (IoT) and
- which facilitate the establishment of smart agricultural production and marketing, as well as digital service system.

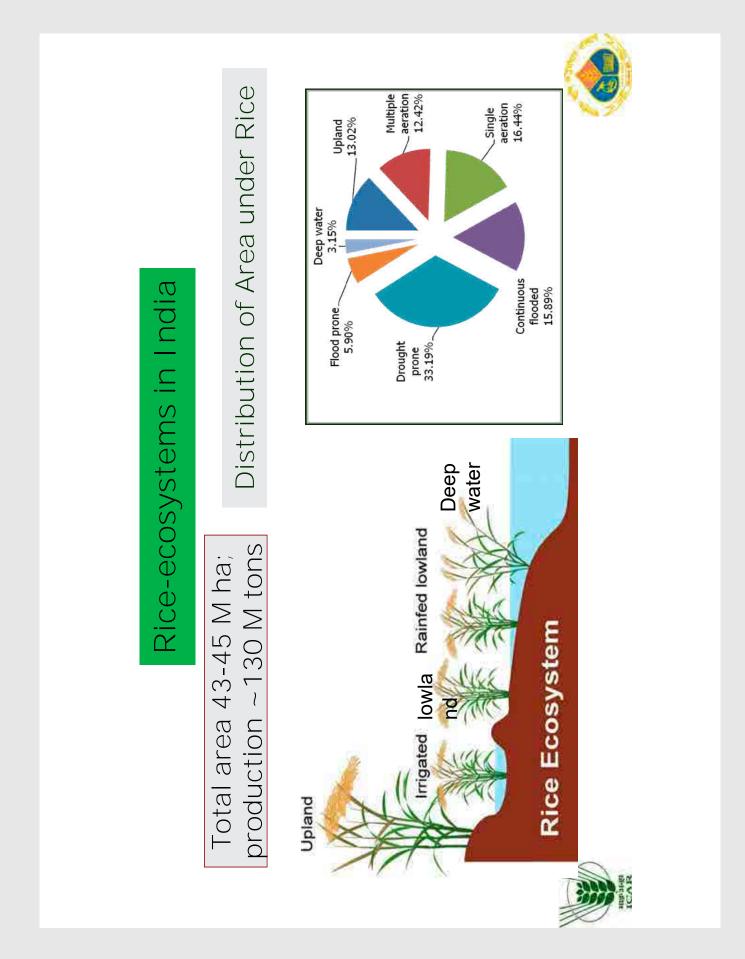
https://www.intelligentagri.com.tw/en

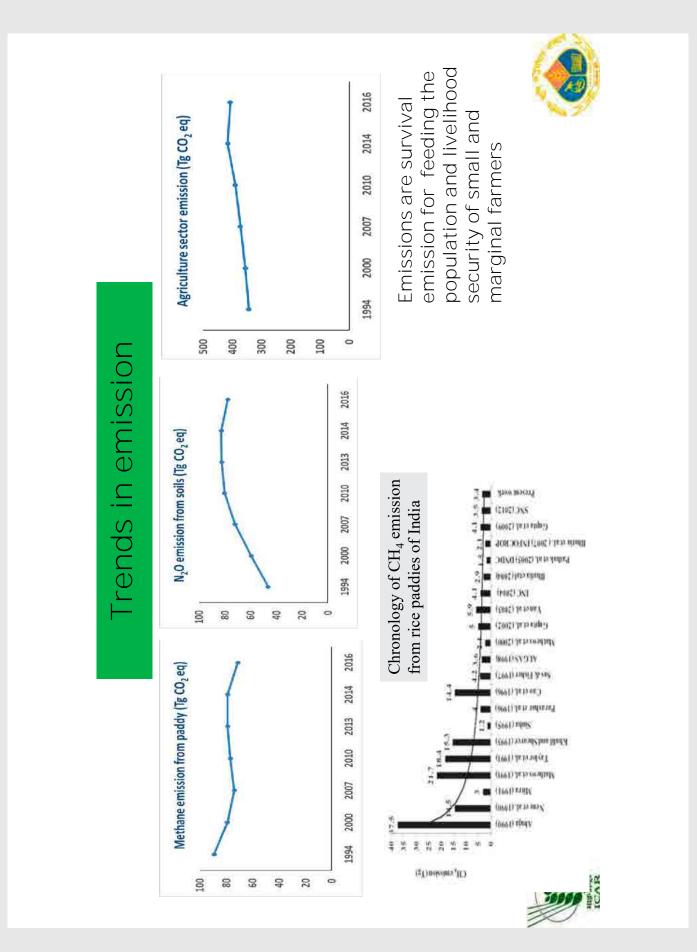
climate-change mitigation and adaptation **Readiness in countries for implementing** technologies

Dr Niveta Jain

ICAR-Indian Agricultural Research Institute, India

Land use pattern and climate of India	 India has a diverse geography varied climate regimes ranging from continental to coastal, from extreme heat /cold, with aridity and negligible rainfall to excessive humidity and torrential rainfall. 	 Geographical area: 328.73 million ha 	• Gross cultivated area: 204.76 million ha; 53% is irrigated	Net sown area: 139.44 million ha: 53.7% irrigated	• Agriculture accounts for ~19 per cent of the GDP of India	 Approximately two-thirds of the population is dependent on agriculture 	• Food grain production: 315.72 million tons	 Ranks second in rice production and wheat production 	• Most of the farmers are marginal with small landholding (> 1 hectare)
Land	 India has continenta rainfall to 	 Geographi 	 Gross culti 	 Net sown 	 Agriculture 	 Approxima 	 Food grain 	 Ranks sec 	• Most of th



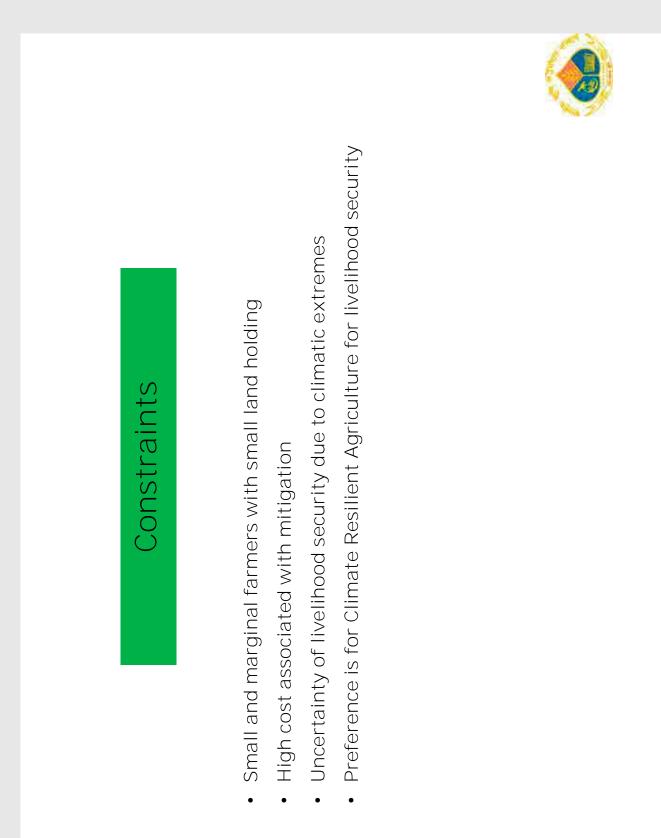

π	3
	-
	2
۱. L	
Ċ)
(
Ċ	5
+	ر ۱
	ך ז
U	5
1	٠ ١
	_
1	2
+	ر _
Ξ	2
()
$\left(\begin{array}{c} \\ \end{array} \right)$	\sum
(\	J
7	
\overline{c}	5
	_
on from anticulture sector of India	-
C	
C)
U)
)
Ç	_
	-

- India has 17.8 per cent of the global population with per capita GHG emissions (including LULUCF) of only 1.96 t CO₂e
- Total agriculture sector emission: 407821 Gg CO_2 eq (14% of India's total GHG emission from different economic sector)
- Methane emissions from paddy : 71322 Gg CO_2 eq (17.5 % of agriculture sector emission)
- N_2O emission from managed soils : 77781 Gg CO₂ eq (19%)
- Manure management : 6.7 %
- Field burning of agricultural residues: 2.2 %

IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD 109

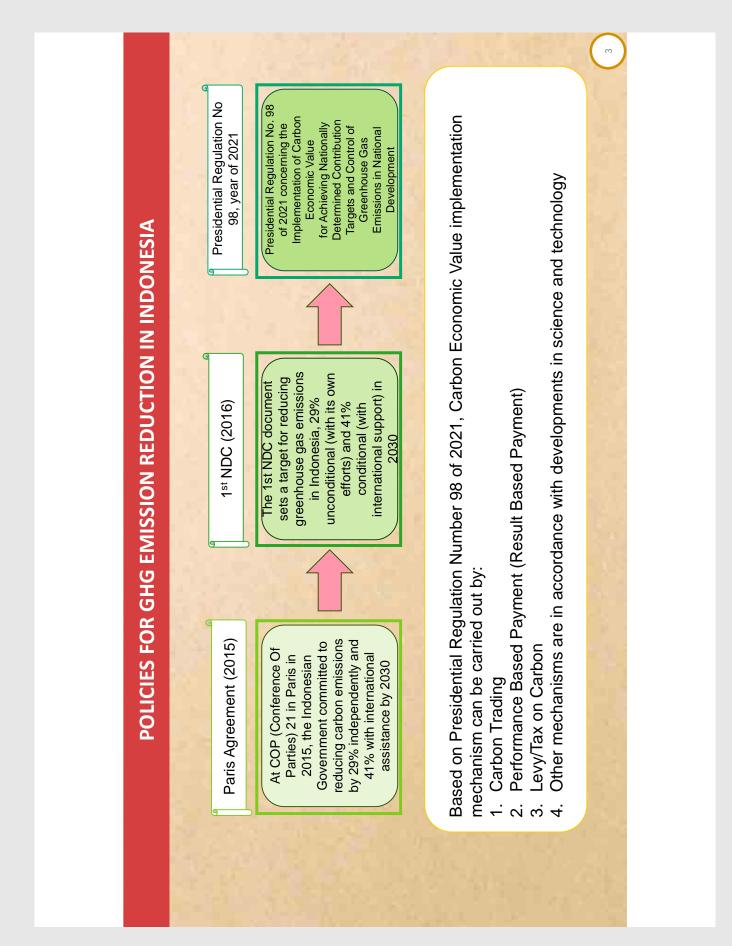
Ministry of Agriculture and Farmers Welfare, Government of India develops Policies and action olan for Climate Resilient Agriculture in India, supports the technologies for adaptation to climate change with various policies like National Mission on Sustainable Agriculture, National Food Security Mission, PM Krishi Sinchai Yojna Natural/organic farming etc.

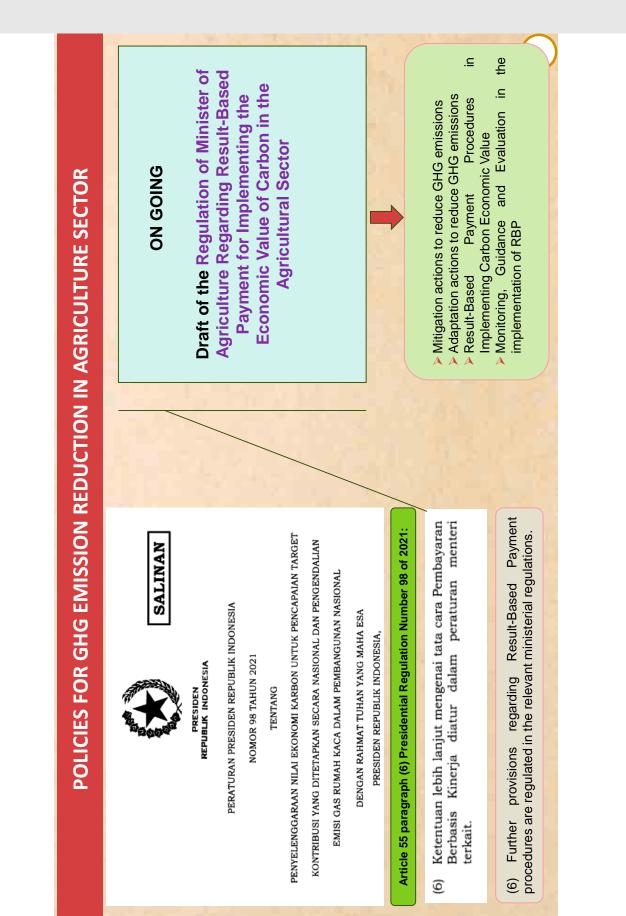
- National Mission for Sustainable Agriculture (NMSA)-crop diversification program
- National Food Security Mission (NFSM)- SRI and DSR promotion to save water
- The national action plans such as National Project on Organic Farming (NPOF) National Mission on Sustainable Agriculture (NMSA), Soil Health Card (SHC) Scheme are directly or indirectly promoting soil C sequestration •
 - Use of solar pumps for irrigation of crops (3.9 million installed .
- promoting the conversion of organic waste like agri-residue along with cattle dung etc. to biogas/ CBG/ Bio CNG and helps in in addressing the problems of crop residue burning. GOBARdhan, a multi-ministerial initiative of Gol covers schemes/programs/policies •



of Power and the other one on green credits through Ministry of Government of India initiated carbon credit trading scheme through Ministry Environment Forest and Climate Change.

- A green credit will be a unit of an incentive provided for a specified activity, delivering a positive impact on the environment.
- An activity generating Green Credits under Green Credit Programme may also get Carbon Credits from the same activity under carbon market.
- There are eight sectors proposed to be included in the scheme- tree plantations, water, sustainable agriculture, waste management, air pollution, mangrove conservation, eco-mark, sustainable buildings and infrastructure.





INDONESIA

GREENHOUSE GAS EMISSION IN INDONESIA

PN N	Sectors	Year	cO ₂	÷	NEO	CF4	C2Fe	8	NON	NINVOC	SOX	Total 3 Gases
1.		2000	284,503	29,728	3,378			NE	NE	NE	NE	317,609
-	Energy	2019	615,262	16,464	4,726			NE	NE	NE	NE	636,453
	and share	2000	42,401	98	149	250	22	NO	ON	NO	ON	42,648
V	ELAN	2019	57,252	16	784	46	0	NO	ON	ON	NO	58,128
T	A	2000	4,710	39,940	39,888		6	2,737	7.4	NE	NE	84,537
1	Agricumure	2019	7,343	46,407	51,552			2,436	99	NE	NE	105,301
	- COLUE	2000	529,815	1,505	1,040			NE	NE	NE	NE	532,360
e.	LOLU	2019	910,280	8,527	6,045			NE	NE	NE	NE	924,853
	THEFT	2000	2,216	57,431	2,544			NE	NE	NE	NE	62,191
n	Waste	2019	3,026	113,702	3,606			NE	NE	NE	NE	120,333
-	1.00	2000	863,645	128,702	46,998	250	22	2,724	20	0	0	0 1,039,345
101	total (LU2-eq)	2019	1,593,163	185,191	66,713	46	0	1,500	41	0	0	1,845,067
	1.101	2000	83.10	12.38	4.52		9		-		0	100.001
PEL	Fercentage (70)	2019	86.35	10.04	3.62			5	4	1		100.00

In 2019, the national GHG emissions reached 1,845,067 Gg CO2e for 3 gases (CO2, CH4, N2O), And GHG emissions from the agricultural sector in 2019 amounted to 105,301 GgC02eq.

Source: GHG emissions from the agricultural sector in 2019 https://unfccc.int/BURs , https://unfccc.int/non-annex-I-NCs

No.	Source Category	Number of Emission (Gg CO2e)	sion (Gg CO2e)
		2018	2019
	CH4 Rice Cultivations	22712	25235
	Indirect N2O Manure Management	3059	4343
	Indirect N2O Managed Soils	7972	7526
	Direct N2O Managed Soils	33404	31800
	CO2 Urea Fertilization	5715	5182
	CO2 Liming	2125	2160
	Non-CO2 Biomass Burning GL	843	822
	Non-CO2 Biomass Burning CL	1385	1255
	Direct N2O Manure Management	6914	7307
	CH4 Manure Management	1668	1772
	CH4 Enteric Ferementation	18266	17898
	Total	104,053	105,301

118 | IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD

TARGET GHG EMISSION REDUCTION INDONESIA ON 2030

r C c Source by n

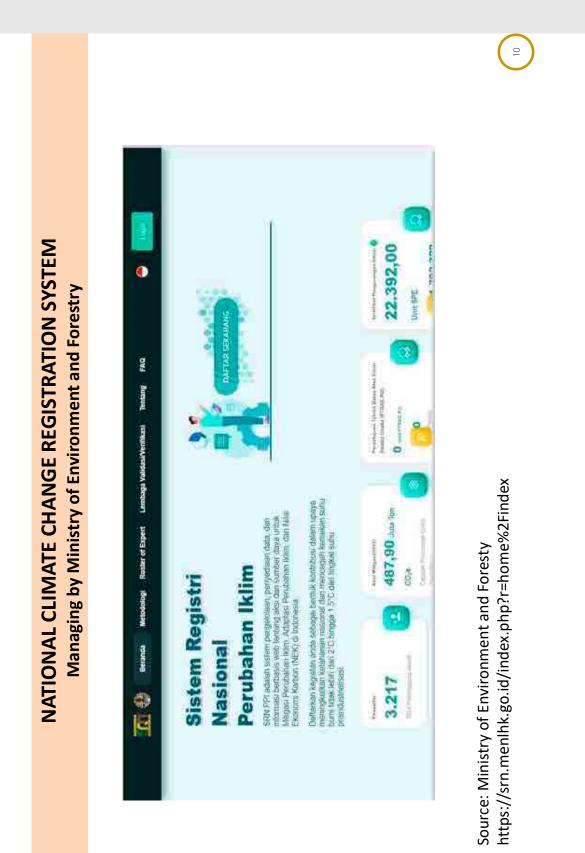
	GHG Emission	H9	GHG Emission Level 2030	sion 90	GHG	Emissi	GHG Emission Reduction	tion
	Level	MT	MTon CO2-eq	be	MTon (MTon COseq	% of Total BaU	al BaU
Joctor	INTen CD2-eq	BaU	CM1	CM2	CMI	CM2	CMI	CM2
1. Energy*	453.2	1,669	1,311	1,223	358	446	12.5%	15.5%
2. Waste	88	236	256	253	40	43.5	1.4%	1,5%
3. PPU	36	69.69	8	61	7	8	0.2%	0.3%
4. Agriculture	110.5	119,66	110	108	10	12	%E0	0.4%
5. Forestry and Other Land Uses (FOLU)**	647	714	214	đt-	500	729	17.4%	25.4%
TOTAL	1,334	2,869	1,953	1,632	915	1,240	31.89%	43.20%
Notes	CM1= Counter Messure	r Measu	12	condition	unconditional ministrian scenario	thin sten	ano)	

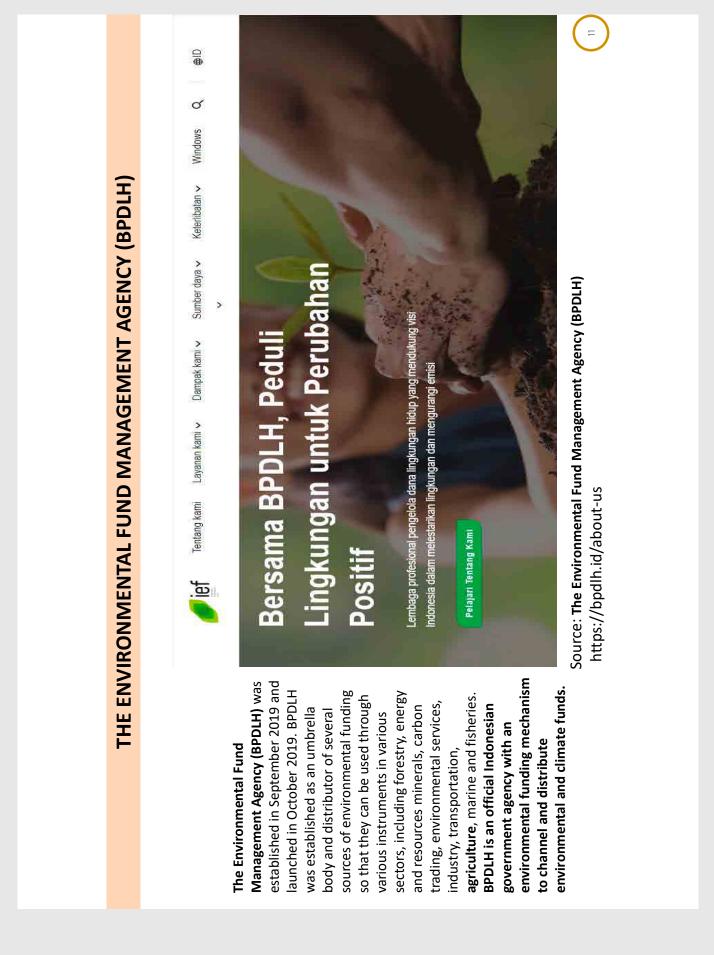
CM2= Counter Massure 2 (conditional militration acevaria)

Including emission from estate and limber danitations. michaling foglive CE **APPENDIX: INDONESIA**

	SE	SECTOR : A G RICULTURE	
	BAU	CM1	CM2
1. The use of low- emission crops.	No mitigation actions.	Total use of land for low emission crops up to 902,000 hectares in 2030*	Total use of land for low emission crops up to 932,000 hectares in 2030*.
2. Implementation of water-efficient concept in water management	of No mitigation r actions.	Implementation of water efficiency up to 2,583,000 hectares in 2030*.	Implementation of water efficiency up to 3,376,000 hectares in 2030*.
3. Organic fertilizers	IS No mitigation actions	n Application of organic fertilizer up to 1,287,000 ton in 2030**	Application of organic fertilizer up to 1,368,000 ton in 2030**
4. Manure management for biogas.	r No mitigation actions.	n Manure used for blogas will come from 166,000 cattle in 2030***	Manure used for biogas will come from 249,000 cattle in 2030***
5. Feed supplement cattle.	Teed supplement for No mitigation cattle.	^{II} Up to 6,942.000 of ruminants in 2030 will be supplied by feed supplement ^{****}	Up to 8.075.000 of ruminants in 2030 will be supplied by feed supplement****
Note: The use of be land use The application	ise of best available technology will increa land use charge for agricultural purposes application of synthetic nitrogen fertilizer w	Note: The use of best available technology will increase crop productivity and lead to the decrease of land use change for agricultural purposes. The application of synthetic nitrogen fertilizer will reduce by 0.15 ton for every one-ton organic	vity and lead to the decrease of ton for every one-ton organic
···· With assumption t investment).	bition that governme nent).	•••• With assumption that government's subsidy will continue taking into consideration its high cost of investment).	into consideration its high cost
for CM1, it is at for CM2 it i population.	is about 27.4% of 2 it is about 37.4% tion.	For CM1, it is about 27.4% of big ruminant population and 20% of small ruminant population and for CM2 it is about 37.4% of big ruminant population and 20% of small ruminant population.	of small ruminant population a 0% 20% of small ruminant
CM1: Counter M CM2: Counter M	easure 1 (Unconditi easure 2 (Condition	CM1: Counter Measure 1 (Unconditional Mitigation Scenario) CM2: Counter Measure 2 (Conditional Mitigation Scenario)	

120 | IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD

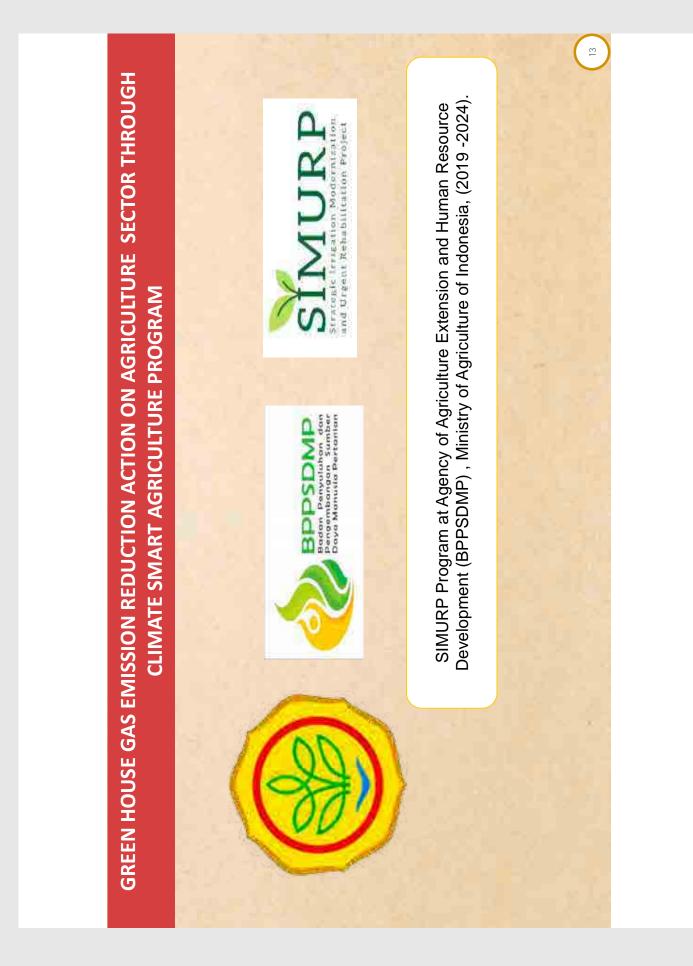

TARGET GH


Source by

CARBON VALIDATION AND VERIFICATION INSTITUTION IN INDONESIA

- PT TUV Rheinland Indonesia Menara Karya Lt. 10, Jl. H.R. Rasuna Said Block X-5 Kav 1-2, Jakarta Selatan, DKI Jakarta LVV-002-IDN
- PT TUV NORD Indonesia
 Perkantoran Hijau Arkadia Tower F. Lt. 6 & 7, Jl. TB Simatupang Kav.88, Jakarta Selatan, DKI Jakarta LVV-004-IDN
- PT Superintending Company of Indonesia
 (PT Sucofindo) SBU Sertifikasi & Eco Framework
 (Sucofindo International Certification Services)
 Graha Sucofindo, JI. Raya Pasar Minggu Kav 34, Pancoran, DKI Jakarta
- PT Mutuagung Lestari Jl. Raya Bogor KM. 33,5, Cimanggis, Depok, West Java

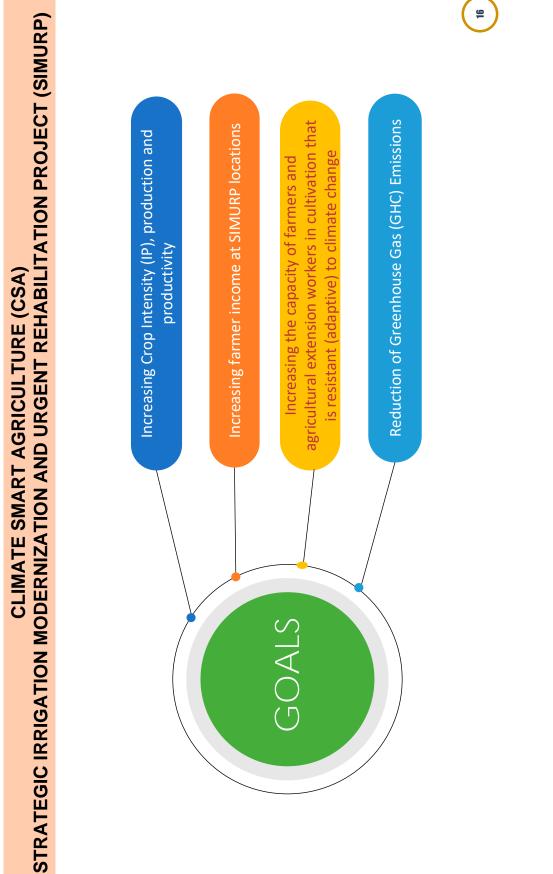
Source: Ministry of Environment and Forestry https://srn.menlhk.go.id/index.php?r=home%2Findex


APPENDIX: INDONESIA

Continue...

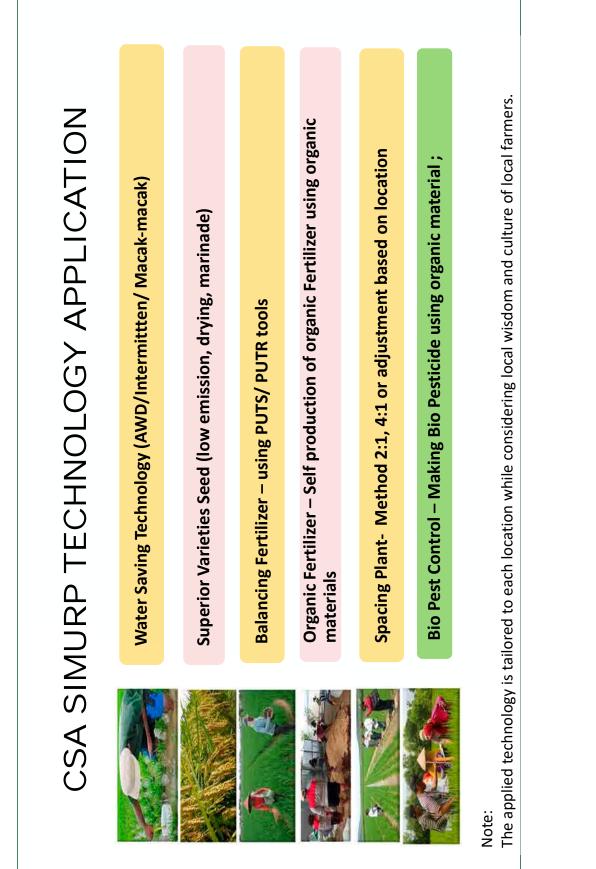
GOVERNMENT ACTION ON CLIMATE RESILIENCE AND LOW CARBON ON AGRICULTURE SECTOR

- Grand Design for Climate Resilient and Low Carbon Development in the Agricultural Sector - 2022
- Climate Smart Agriculture (CSA) on Strategic Modernization Management and Urgent Rehabilitation Project (SIMURP) - On going (2019 -2024)
- Regulation of Minister of Agriculture Regarding Result-Based Payment for Implementing the Economic Value of Carbon in the Agricultural Sector – On Going
- Upcoming Program "Climate Resilient And Low Carbon Agricultural Development" 2025 -2029



IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD | 127

SIMURP ACTIVITY PERIOD 2019 -2024


Capacity Building: Training of Master (TOM), Training of Trainer (TOT) and Training of Farmer (TOF)

meeting) implemented by Farmer group and Farmer and facilitated by Agriculture Extension staff Supporting CSA technology through a field school approach (demplot, farmer discussion/field (BPP)

Strengthening BPP through 5 BPP roles (Data and Information Center, Development Movement Center, Learning Center, Agribusiness Consultation Center, Partnership Network Center) Product and Market Linkage Development through Farmer's Economic Institutions (KEP) involving voung farmers in SIMURP locations

Facilitation of Agricultural Products Home Industry Processing Equipment involving Farmer <u> Wome</u>n's Group (KWT)

<u>Measurement of Greenhouse Gas (GHG) Emissions in collaboration with Agricultural</u> Environmental Research Institute (BPSI LINGTAN PATI) Central Java

Rice Productivity of CSA SIMURP Demonstration Plots for 2020-2023*

Productivity on CSA SIMURP vs Non CSA Ton/Ha GKP (Harvested Dry Grain)/ Demplot

Paddy Per Ton/Ha/		2021			2022			2023*	
Seasons	CSA	CSA Non CSA	Increase	CSA	Non CSA	Increase	CSA	Non CSA	Increase
Productivity	6,98	6,34	0,64	6,74	6,09	0,65	6,94	6,07	0,87

Note:

Data samples from SIMURP Location in 10 Province SIMURP Location

2023 data is temporary (In progress)
 Productivity Increase average 12% com

Productivity Increase average 12% compare to Non CSA Productivity

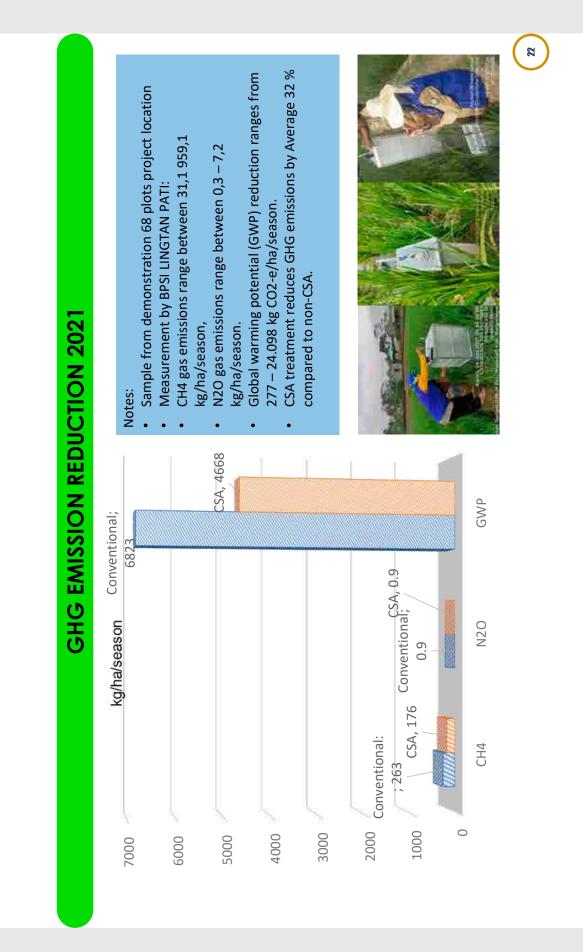
IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD | 131

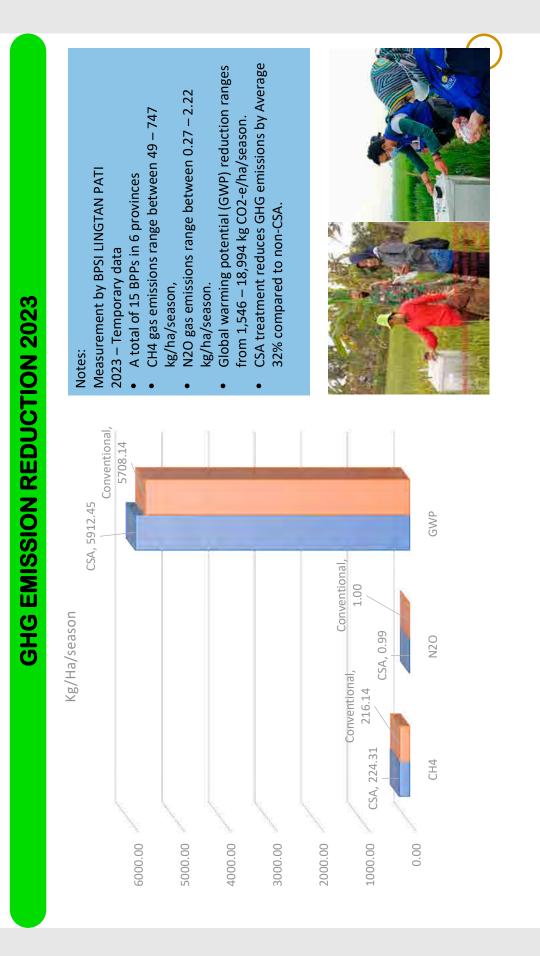
No.									
	Province	Production Cost (Rp./Ha)	on Cost Ha)	Revenue (Rp./Ha)	nue (Ha)	Profit	ofit	~	R/C
		CSA	Non CSA	CSA	Non CSA	CSA	Non CSA	CSA	Non CSA
	Sumatera Utara	19.512.848	19.586.813	38.216.737	35.057.988	18.703.890	15.471.175	1,96	1,79
2 Su	Sumatera Selatan	8.704.017	11.799.667	21.866.667	21.520.000	13.162.649	9.720.333	2,51	1,82
3 Jav	Jawa Barat	18.747.880	20.233.014	34.275.344	29.215.503	15.527.464	8.982.488	1,83	1,44
4 Jav	Jawa Tengah	24.087.864	25.481.307	30.067.459	27.635.309	5.979.595	2.154.002	1,25	1,08
5 Jav	Jawa Timur	26.650.000	27.150.000	31.682.500	29.296.250	5.032.500	2.146.250	1,19	1,08
6 Ka	Kalimantan Tengah	15.054.000	15.095.000	19.250.000	17.118.750	4.196.000	2.023.750	1,28	1,13
7 Su	Sulawesi Selatan	22.085.000	23.079.643	28.967.696	26.929.913	6.882.696	3.850.270	1,31	1,17
8 Su	Sulawesi Tenggara	13.760.000	13.776.500	20.664.000	17.640.000	6.904.000	3.863.500	1,50	1,28
nN 6	Nusa Tenggara Barat	14.659.875	15.070.262	32.231.069	27.819.318	17.571.194	12.749.056	2,20	1,85
10 Nu	Nusa Tenggara Timur	14.000.000	15.000.000	28.875.880	28.836.923	14.875.880	13.836.923	2,06	1,92
	Total	177.261.484	186.272.206	286.097.352	261.069.954	108.835.868	74.797.748	1,61	1,40
	Average	17.726.148	18.627.221	28.609.735	26.106.995	10.883.587	7.479.775	1,61	1,40
	SeBalance	•	901.072		2.502.740		3.403.812		0,21
		-4.84%	4%	9.59%	3%				

PROFESSIONAL, COMPETITIVENESS, ENTREPRENEURS 20

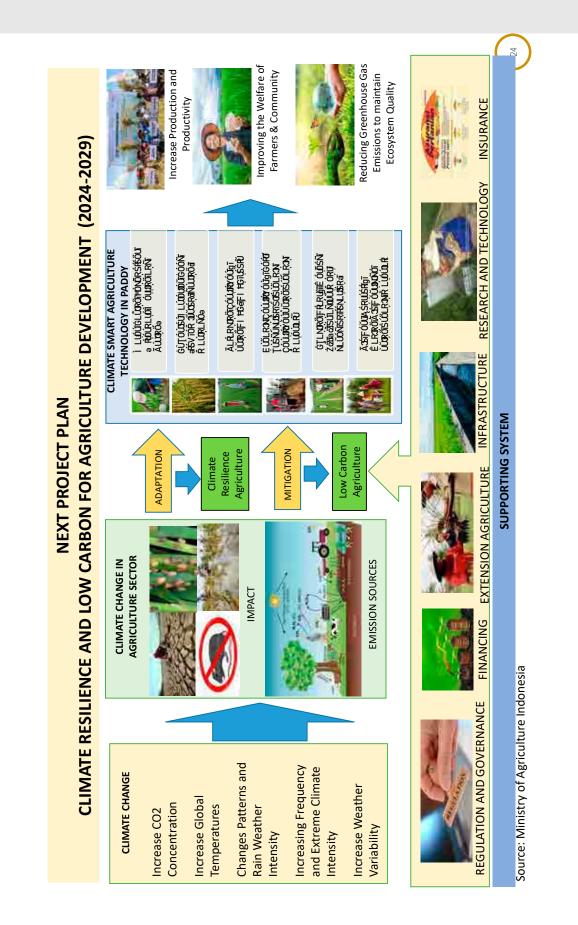
132 IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD

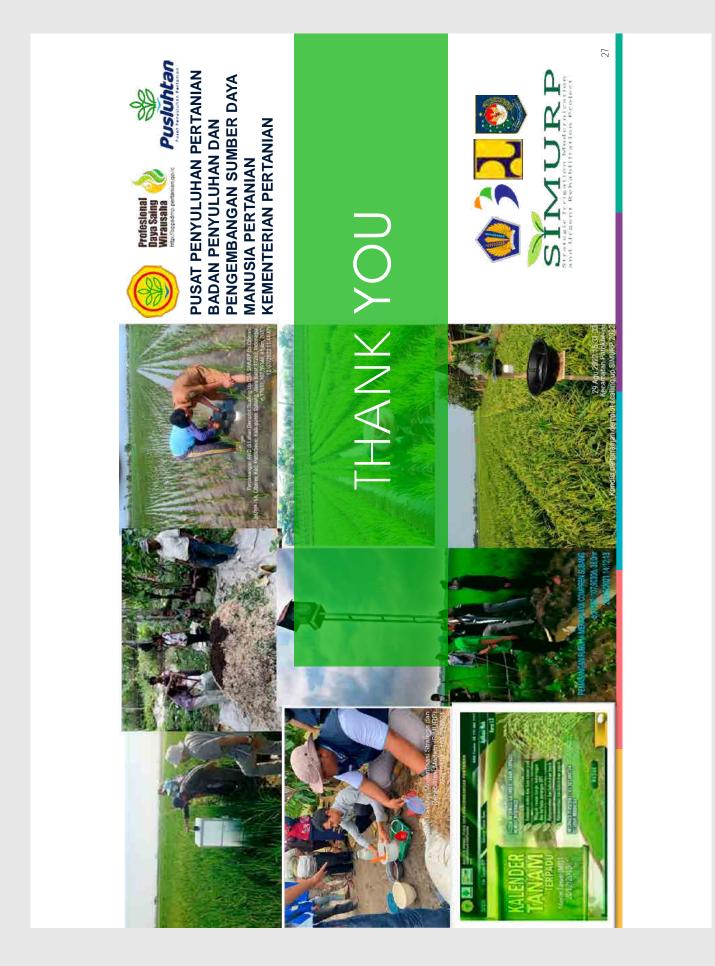
AWD WATER USAGE MEASUREMENT (CSA VS NON CSA) 2022-2023


Location	Method	Cover Area	Total Rainfall	Total WaterTotal WaterTotal WateSupply VolumeUsage VolumeVolume	Total WaterTotal WaterUsage VolumeVolume	Total Water Volume	Water Saving
		(ha)	(m3)	(m3)	(m3)	(m3/ha)	(%)
North Field	CSA	60'0	0,79	972,15	972,15	10.810,52	10.810,52 21% (CSA vs
Area	Non CSA	60'0	0,79	1.236,69	1.237,48	13.749,82	Non CSA)
South Field	CSA	0,08	0,56	963,70	963,70	12.046,30	12.046,30 12% (CSA vs
Area	Non CSA	0,08	0,56	1.099,28	1.099,48	13.748,06	Non CSA)


1st Cropping Period Data

Notes: 1st Cropping Period at Pilot CSA Scaling Up location in Patoek Beusi, Subang, West Java - Done 2nd Cropping Period at Pilot CSA Scaling Up location in Patoek Beusi, Subang, West Java - On Progress

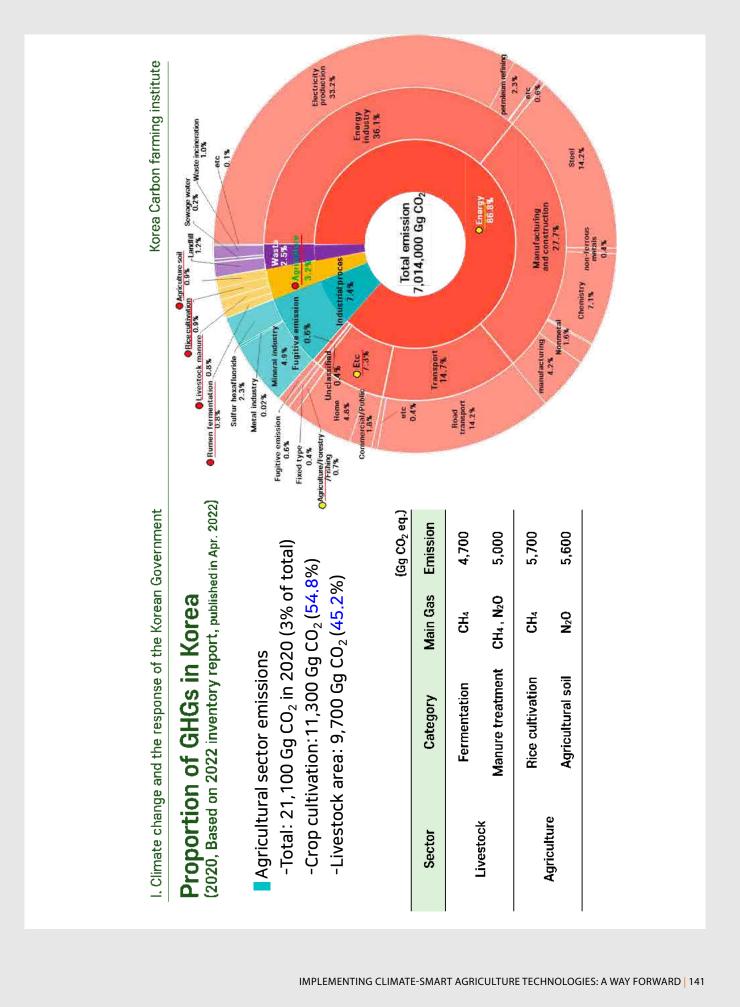

Measurement by BPSI AGRO KLIMAT DAN HIDROLOGI


IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD | 135

CONCLUSION

- Minister of Agriculture Regulation concerning Result-Based Payments (RBP) for the Application of Carbon To support Presidential Regulation Number 98 of 2021, the Ministry of Agriculture is currently drafting a Economic Value (CEV) in the Agricultural Sector.7
- reports and regulation of RBP benefits. The benefits received must be used for activities related to reducing GHG emissions as well as other supporting activities (increasing institutional capacity, increasing human For RBP operations, it will contain action plans, emission reports, validation and verification of emission resources, research, etc.). •
- The application of CSA technology is mitigation and adaptation solution to reduce GHG emissions and increase rice yields in agriculture sector; •
- Capacity building for Agriculture Extension officers is needed to supervise farmer in the application of CSA Technology (Water-saving Technology (AWD), Balanced Fertilization, produces/use of organic fertilizers, Jarwo, etc.); •
- Farmers' awareness on CSA application will be effected GHG emission reduction besides increasing production/productivity and farmers' income; •
- To support CSA technology through water-saving / AWD / Intermittent technology, it requires cooperation from all agencies, both central and regional government as well as extension workers in optimizing farmers through poktan, P3A, (Continuous improvement and maintenance of primary, secondary and tertiary channels is needed)

25



138 IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD

THE ROK

I. Climate change and the response of the Korean Government	Korea Carbon farming institute
Efforts for carbon neutral (climate change mitigation)	
Declare Net-Zero 2050 (Oct, 2020)	
Long-term low greenhouse gas Emission Development (Dec, 2020)	
Declare of 2030 NDC upward goals (Oct, 2021)	
Establishment of the 2050 Agricultural and Food Carbon Neutrality Promotion Strategy (Dec, 2021)	Strategy (Dec, 2021)
 Low-carbon agricultural structure transition Decrease greenhouse gas emission Reduction of fossil fuel use and energy conversion Expansion of rural renewable energy supply 	
Establishment of 2050 carbon-neutral agricultural technology development and distribution	nd distribution
 ① Establishment of GHGs inventory and improve statistics ② Expansion of carbon reduction agricultural technology ③ Increase GHGs absorption strategies ④ On-site spread 	

Rice cult	Rice cultivation area	æ					
Categories	Sub-factors	Value	Registration year	Categories	Sub-factors	Value	Registration year
Default value	Continuously flooded	2.32 kg CH₄ ha⁻¹ day⁻¹	2014	Water management	Non-flooded <180 d	-	2014
	0Mg/ha		2014	berore rice cultivation	Non-flooded >180 d	0.8	2014
	3Mg/ha	2.96	2014		Flooded preseason >30 d	1.09	2014
Cover crop annlication	6Mg/ha	4.92	2014		Continuous/v flooded)	-	2014
	9Mg/ha	6.88	2014				
	12Mg/ha	8.84	2014	water management during	1 week drainage period	0.83	2014
	1-3Mg/ha	1.2	2014	rice cultivation	2 week drainage periods	0.66	2014
Rice straw	3-5Mg/ha	1.7	2014		3week drainage periods	0.49	2014
application	5-7Mg/ha	2.5	2014		-		
	>7Mg/ha	3.4	2014	Rice straw	Spring input with tillage	-	2019
	3			application	Autumn input with spring tillage	0.79	2019
				and unage	Autumn input with tillage	0.58	2019

I. Climate change and the response of the Korean Government

Gyeongsang national university

APPENDIX: THE ROK

I. Climate change and the response of the Korean Government

Korea Carbon farming institute

Developed agricultural greenhouse gas emission factor

Agricultural sector

Categories	Sub-factors	Value (kg N2O-N/kg N)	registration year
	Upland soil	0.0060	2014
	Red pepper	0.0086	2014
N ₂ 0 emission	Soy bean	0.0119	2014
(chemical fertilizer)	Potato	0.0049	2014
	Spring cabbage	0.0056	2014
	Autumn cabbage	0.0058	2014
Indirect emission	Leaching/runoff	0.0135	2015
	Cow	0.0101	2019
N ₂ 0 emission (livestock manura)	Swine	0.0136	2019
	Chicken	0.0088	2019

	nevelopeu agricultural greenirouse gas enrission ractor		
Livestock farming			
Categories	Sub-factors	Value (CH4 kg/head/yr) Registration year	Registration year
	Korean beef male <1yr	43	2018
	Korean beef male >1yr	61	2018
Rumen	Korean beef female <1yr	45	2018
fermentation	Milk cow female >2yr	139	2020
	Milk cow female 1-2yr	83	2020
	Milk cow female <1yr	33	2020

144 | IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD

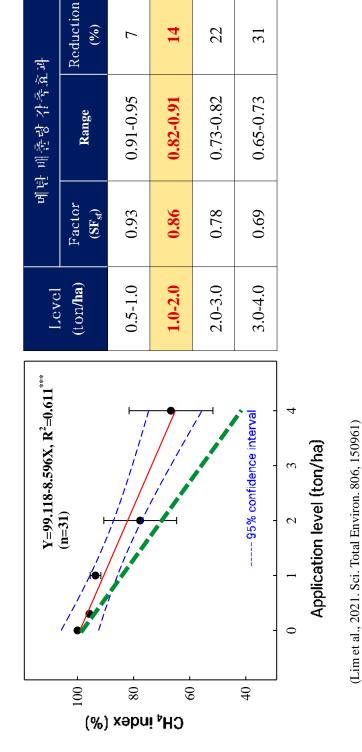
Government
Korean
of the
response
and the
change
I. Climate

Korea Carbon farming institute

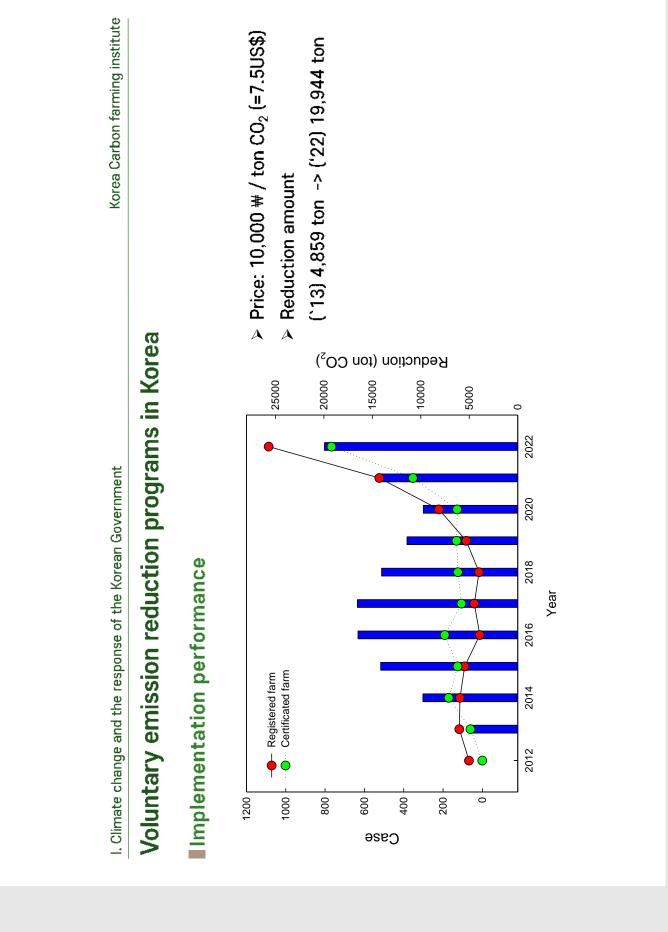
Developed agricultural greenhouse gas emission factor

Soil amendments

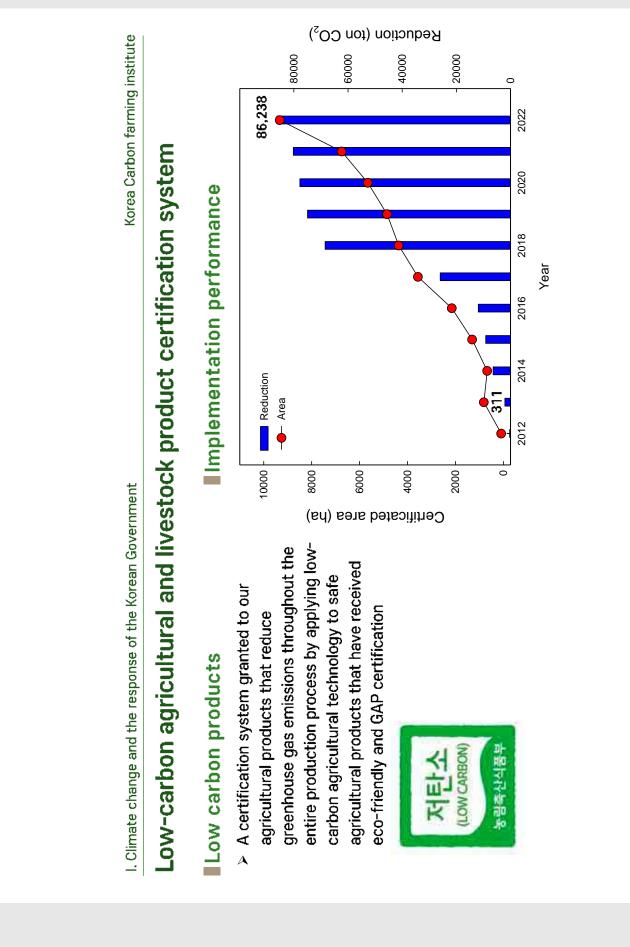
Cate	Categories	Sub-factors	value	registration year
		Rice paddy	0.0148	2018
-	-	Summer upland	0.0619	2018
	Olea	Winter upland	0.0517	2018
		Upland total	0.054	2018
	CaCO ₃	Summer upland	0.0086	2018
	CaMg(CO ₃) ₂	Summer upland	0.0157	2018
		0.5-1 ton/ha	0.92	2021
		1.0-2.0ton/ha	0.86	2021
ollicati	ollicate feruilzer	2.0-3.0 ton/ha	0.78	2021
		3.0-4.0ton/ha	0.69	2021

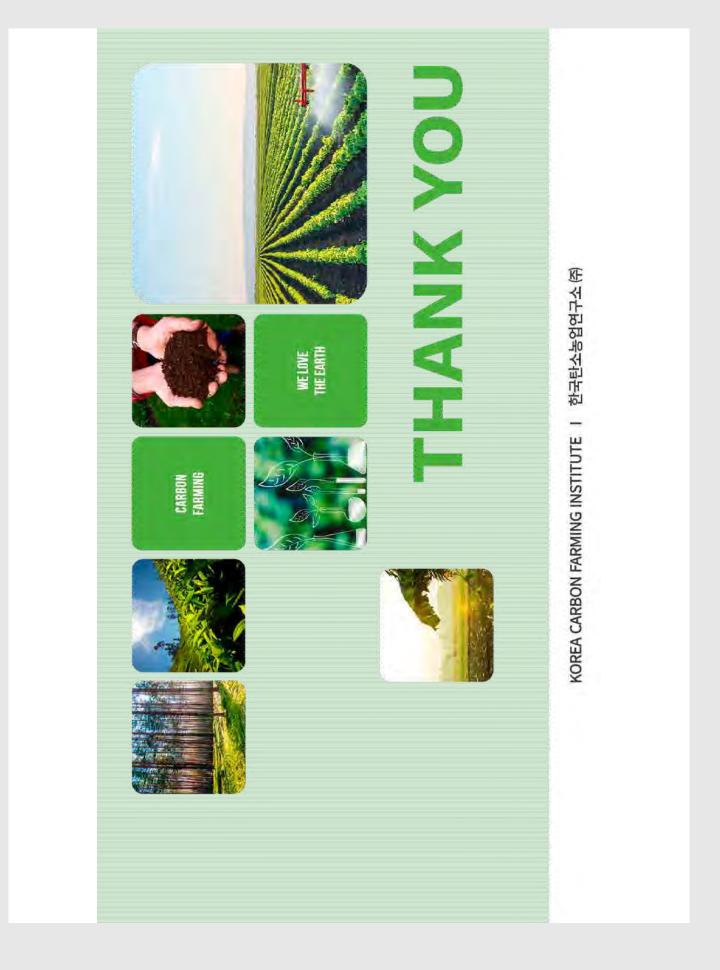

I. Climate chang	je and the respons∈	l. Climate change and the response of the Korean Government	vernment		Korea Carbor	Korea Carbon farming institute
Silicate fertilizer	ertilizer					
> 2-6% rec	> 2-6% recycling as a soil amen	amendment in K	Idment in KOREA & JAPAN	PAN		
» Guarante	e the safety of i	ightarrow Guarantee the safety of iron slag on human health & environmental quality	nan health (& environment	tal quality	
					Property	Mean
					рН (1:5, Н ₂ О)	9.5
Iron ore					Total concentration (%)	
Coke Limeston	Coke Limestone (CaCO_)				CaO	42
					SiO ₂	33
				Carlo Carlo	Fe ₂ O ₃	5.4
)		C.S.	Al ₂ O ₃	14
			Ţ		MgO	4
			4		Active Fe (mg kg ⁻¹)	3,078
	Acino.	Granulation	Silicate		Free Fe (mg kg ⁻¹)	1,570
20	cooling		Fertilizer	cultivation	Water-soluble Fe (mg kg ⁻¹)	56

I. Climate change and the response of the Korean Government


Korea Carbon farming institute

Silicate fertilizer


Emission factor development


Korea Carbon farming institute					
orea		se Se			
I. Climate change and the response of the Korean Government Voluntary emission reduction programs in Korea Methodology	Methods	Unused energy use Circulating water film cultivation LED lighting equipment installation Use of high-efficiency thermal insulation materials Using geothermal energy Renewable energy	Cover crop use Chemical fertilizer reduction Slow release fertilizer use by-product fertilizer	woody biomass use (pellet) Biogas plant power generation RPC grain drying using rice husk	Water management in rice paddy Conservation tillage Land use change (paddy -> upland) Carbon sequestration using biochar
Voluntary emis Methodology	Categories	Energy use efficiency	Chemical fertilizer reductio	Biomass utilization	Other projects

IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD | 149

APPENDIX: THE ROK

IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD | 151

PAKISTAN

	<u>Global Food-Security Implications</u> World Ranking – Crop Production	 Chickpea (3rd) Apricot (6th) Cotton (4th) Milk (5th) Milk (5th) Date Palm (5th) Sugarcane (5th) Onion (7th) Onion (7th) Minago (4th) Wheat (7th) Rice (4th)
Background - Pakistan	 Pakistan is ranking fifth by population (241.49 million, 2023 census) and thirty-fourth by area spanning 88.19 million hectares in the world; Cultivated Area is around 22.74 million hectares: 	 Total irrigated land is around 19 million hectares; More than 90% of available water is used in agriculture; The contribution of agriculture to GDP is around 25%; Agriculture contributes 65% of raw materials to industries; Agriculture employs 43% of the workforce; The share of agriculture in exports is 60%; The livelihood of 60% rural population depends on agriculture; Land holding: Less than 1 ha = 43% and >2 ha = 36% of farmers
		IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD 153

2018	() 218.94 (45%)	25.76 (5%)	(9	223.45 (46%) {198.59 + 24.86}	21.72 (4%)	<u>489.87</u>
2015	185.97 (46%)	21.58 (5%)	174.56 (43%)	10.39 (3%)	15.65 (4%)	408.15
2012	171.44(46%)	19.59 (5%)	162.86 (44%)	9.67 (3%)	10.54 (3%)	374.11
1994	85.81(47%)	13.29 (7%)	71.63 (39%)	6.52 (4%)	4.45 (2%)	181.70
Sectors	Energy	Industrial Processes	Agriculture	Land Use Change and Forestry (LUCF)	Wastes	TOTAL
National GHG	Inventories	of 1994, 2012, 2015 and 2018 by Sector (mt co, Eq.)	Sources of GHG emissions	(million tones of Carbon di- oxide (CO ₂) equivalent) 21.72 223.45 25.76 218.94 218.94	 Industrail Processes Agriculture & Forestry Waste 	National GHG profile 2018

154 | IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD

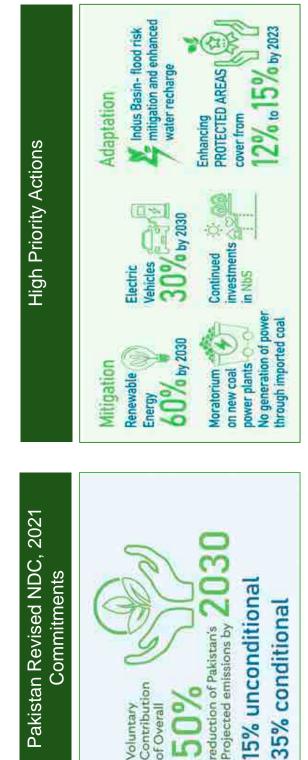
U
Ċ
.=
Ξ
\bigcirc
0
T
Ð
S
Ð
<u> </u>

- Background information
- Greenhouse Gas Inventories, NDCs and voluntary commitments
- Climate change impacts in Pakistan
- Climate change mitigation and adaptation Actions/Achievements
- Need and readiness of Pakistan for NARO technologies
- Major barriers in climate change mitigation and adaptation
- Major potential for GHG emission reduction

estry and other	
nissions from Agriculture, Forestry and other	ectors (m t CO ₂ e) in 2018
GHG emissions fro	OLU) sectors (m t
Summary of GHG en	Land use (AFOLU) se

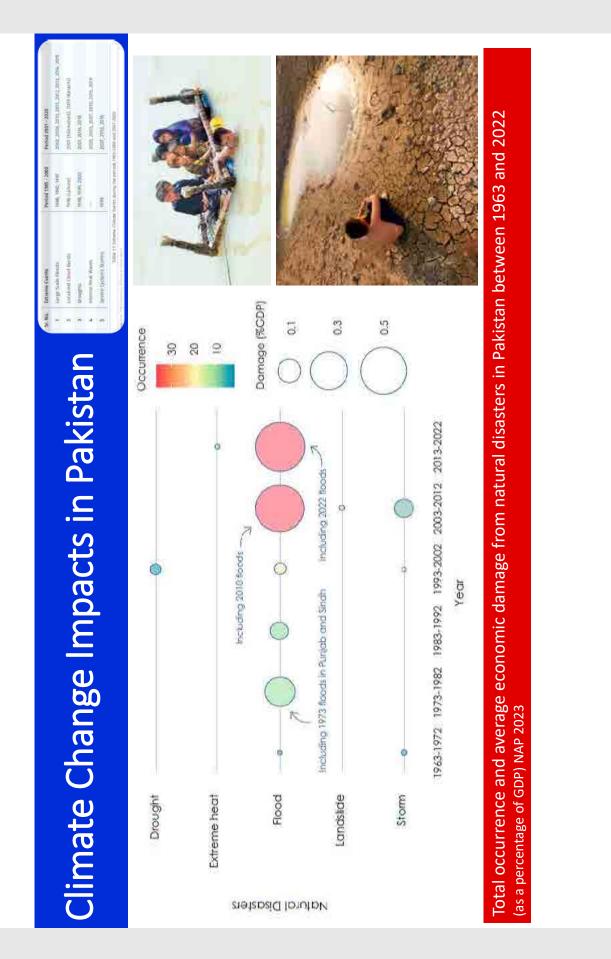
LivestockLand28.70Managed soils4.25Rice Cultivation		N ₂ O	Total
aged soils Cultivation	99.99	9.13	109.12
Ę	0 1.94	0.89	31.52
		70.73	74.98
	7.83	1	7.83
Total 32.95	5 109.75	80.75	223.45

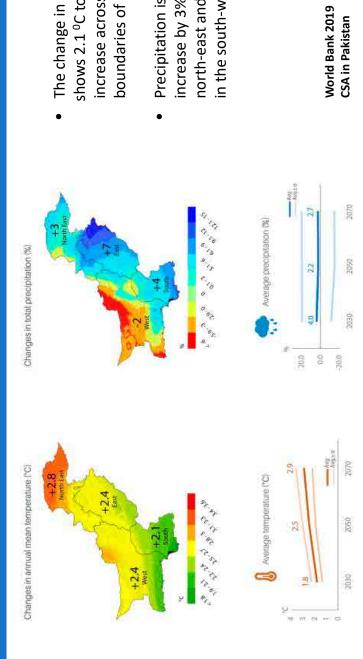
156 | IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD

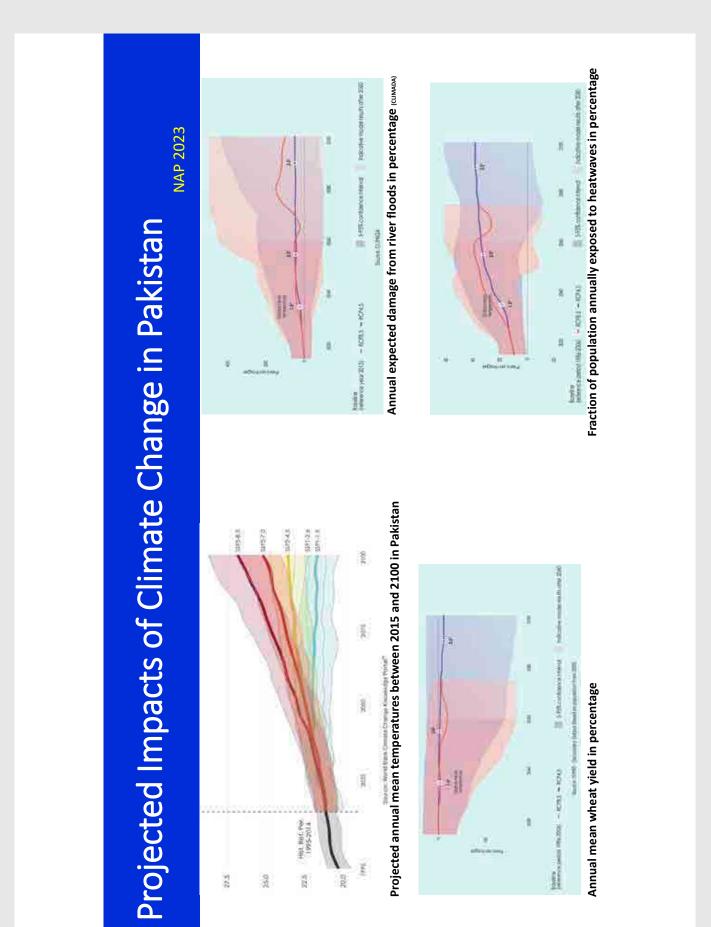


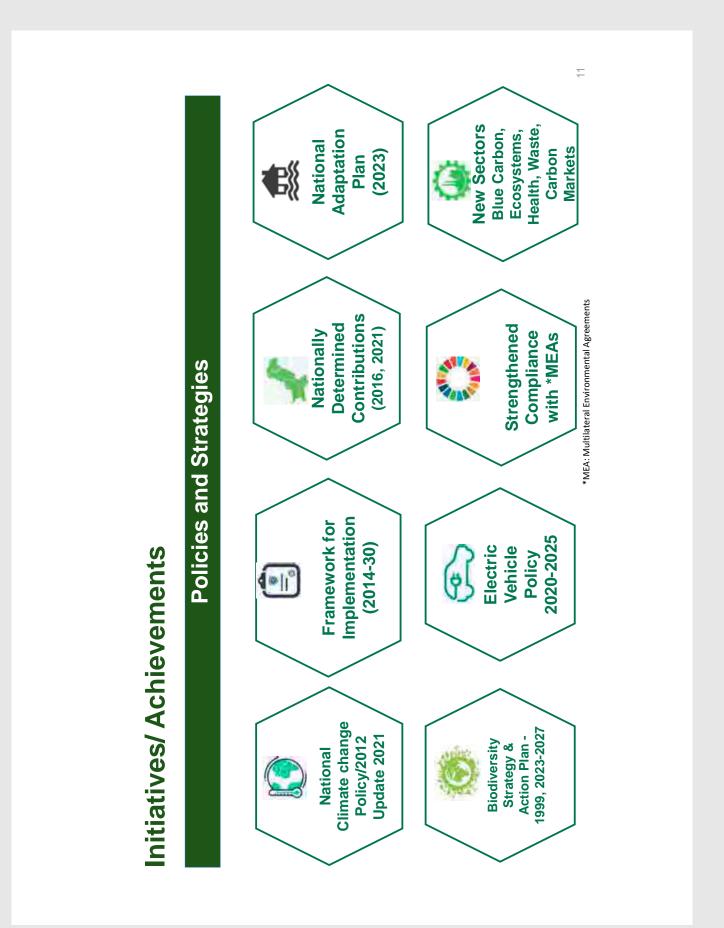
Pakistan committed 20% reduction in GHG emission of its 2030 projected GHG emissions, subject to the availability of international grants, which was estimated at about US\$ 40 billion (US\$7-14 billion/year) at current prices.

Pakistan's Nationally Determined Contribution Pakistan's Updated NDC (2021)

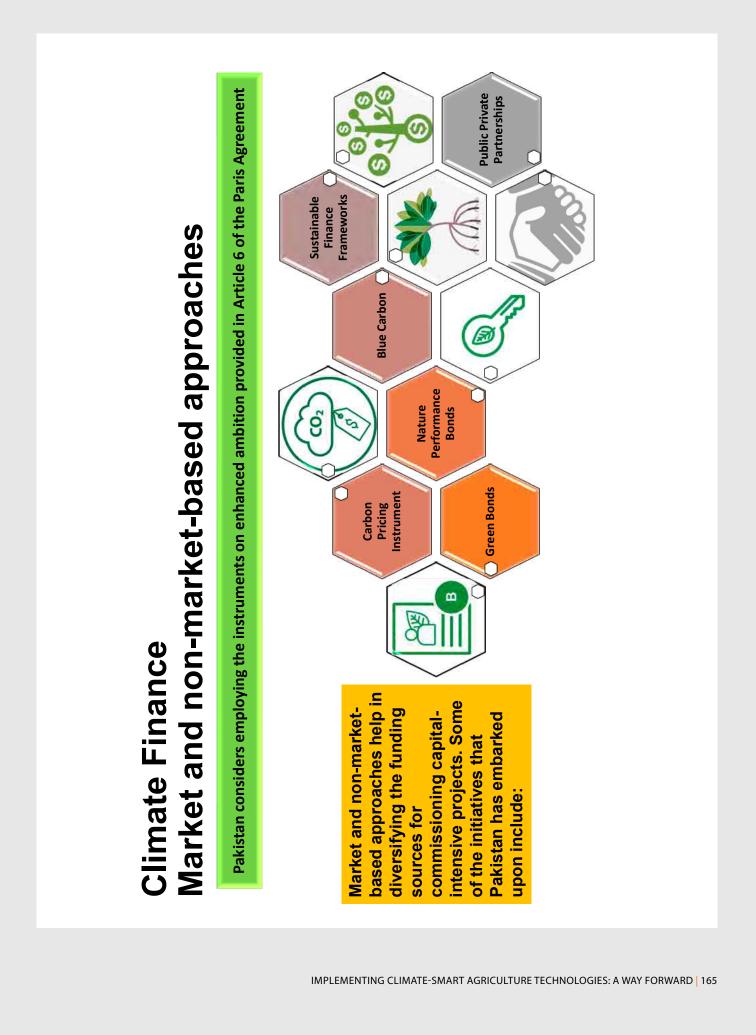

Highlights of the Revised Nationally Determined Contributions (NDC)


Pakistan's priority contributions by 2030: around 1.7 mt CO₂eq from shelving of two imported coal power plants, 24 m t CO₂e from the introduction of <u>Electric Vehicles</u>, and around 45 m t CO₂e from converting 60% energy generation to renewable energy

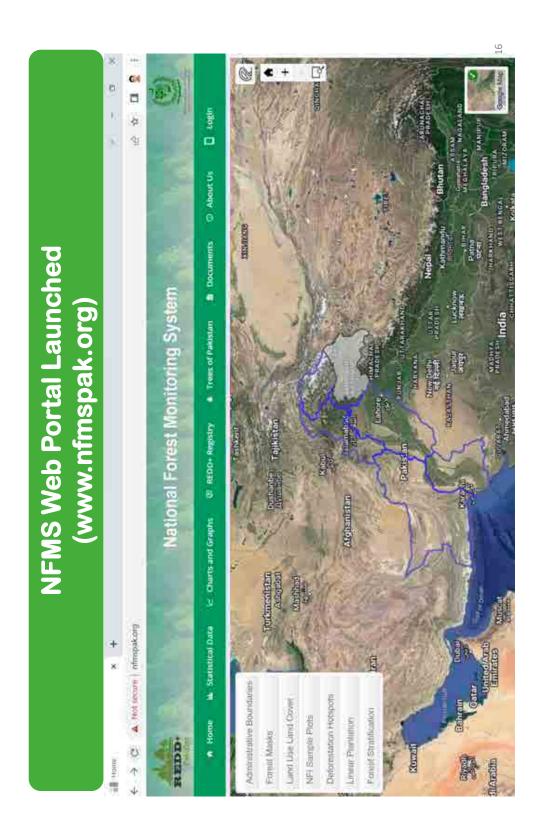




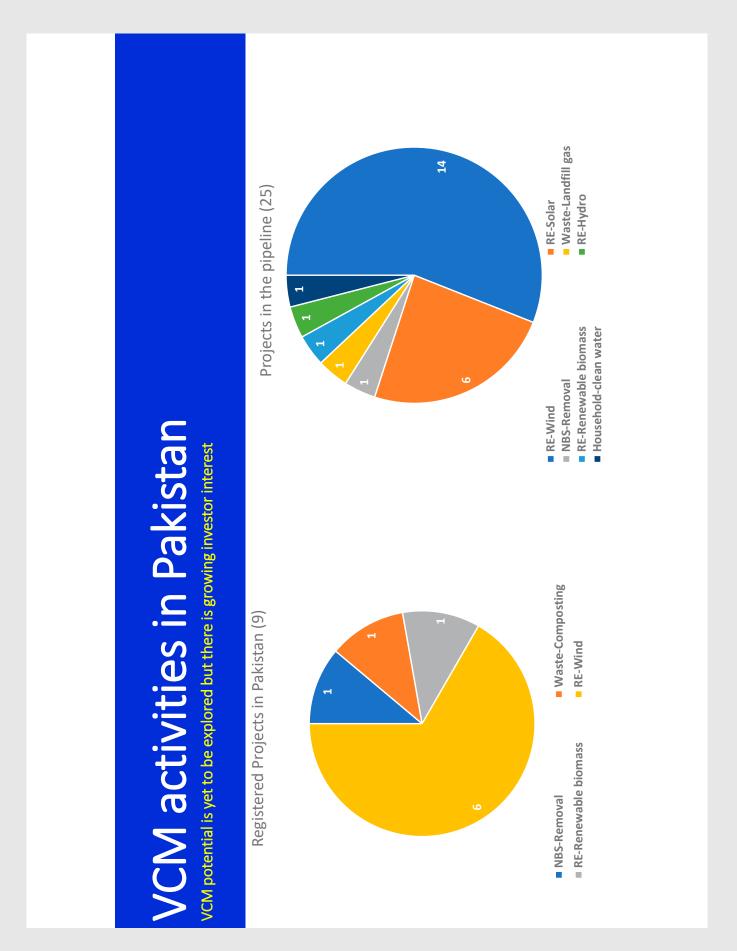
Projected changes in temperature and precipitation in Pakistan

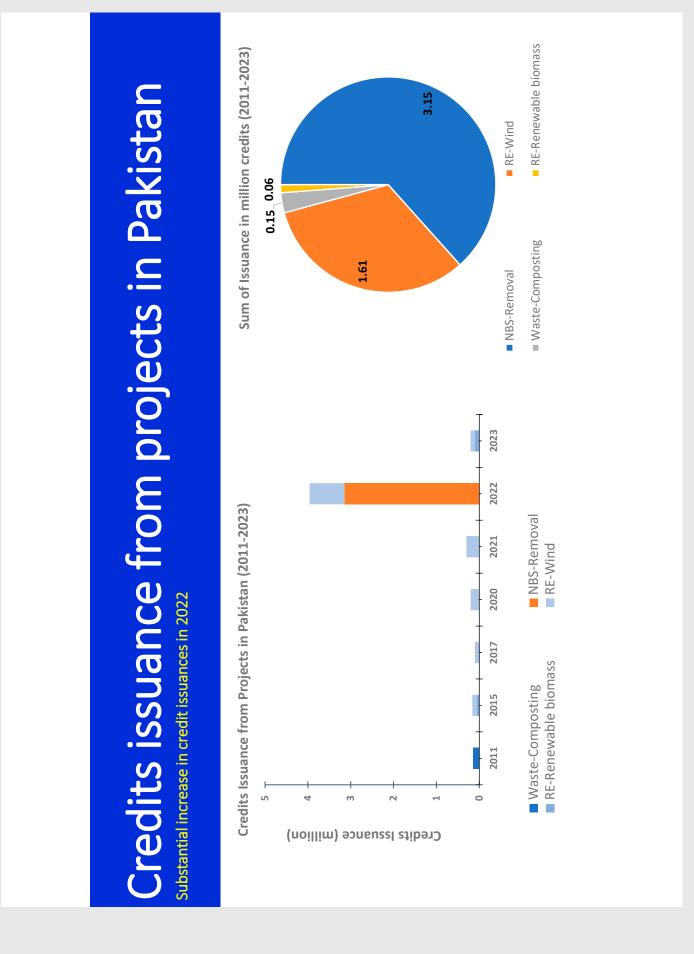


- The change in temperature increase across the spatial boundaries of Pakistan shows 2.1 °C to 2.8 °C
- north-east and reduce by 2% increase by 3% to 7% in the Precipitation is expected to in the south-west



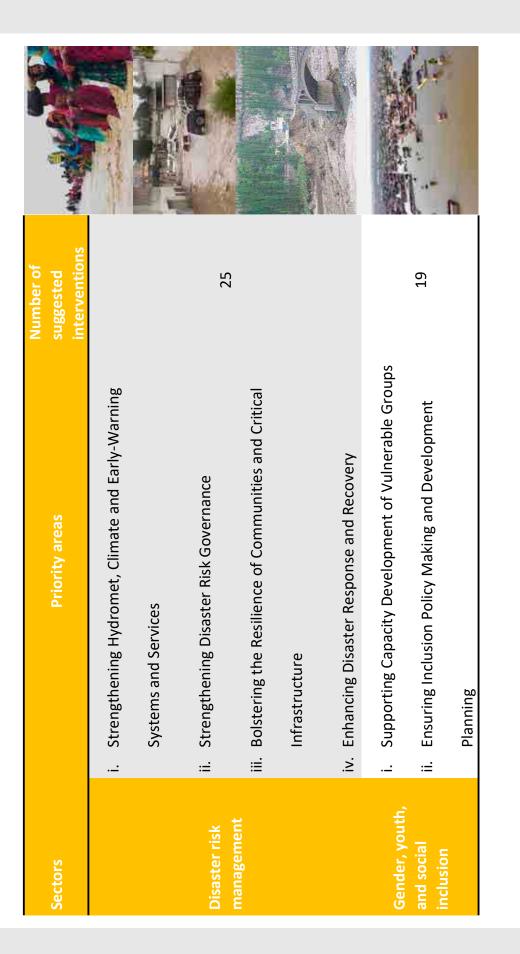
	olio	rtfolio of \$124 million ate Resilient Agriculture & Water nsit (BRT) system in Karachi ood (GLOF) risk reduction in	oing portfolio of \$19.4 million	Development Partners (World Bank's portfolio of \$188 m) Ittners mostly small scale funding for technical assistance
Climate Finance and Pakistan	Current Portfolio	 Green Climate Fund (GCF) ongoing portfolio of \$124 million Transforming the Indus Basin with Climate Resilient Agriculture & Water Management Building a zero-emissions bus rapid transit (BRT) system in Karachi Northern Pakistan 	Global Environment Facility (GEF) ongoing portfolio of \$19.4 million	Others Multilateral Development Partners (Worl Bilateral partners mostly small scale function
Climate		GREEN	gef	90 90 90 90 90 90 90 90 90 90 90 90 90 9

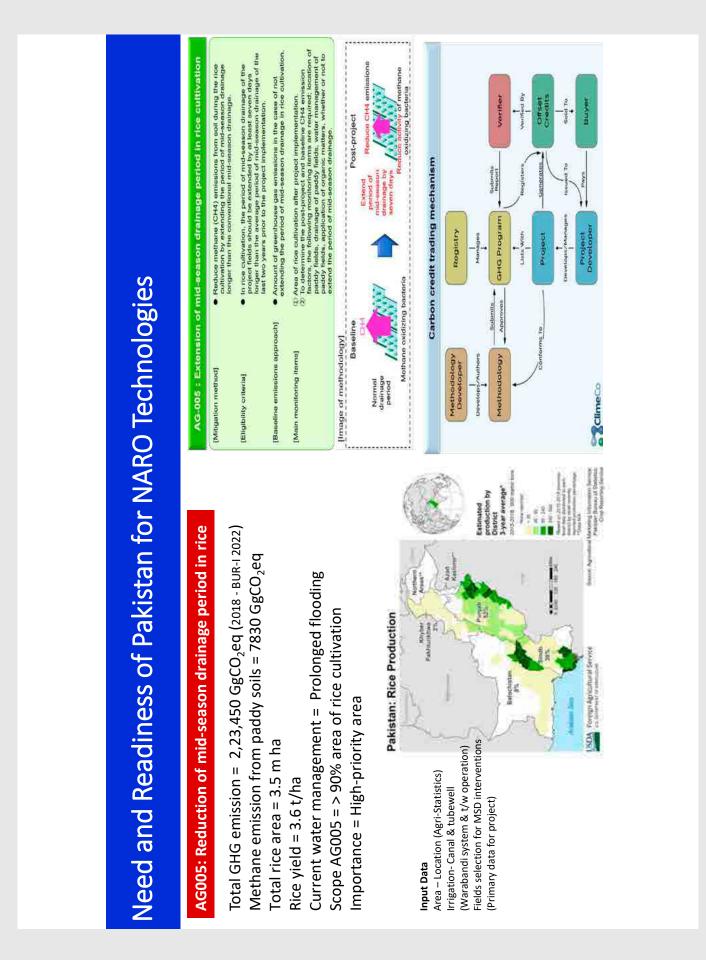

National transparency web platform


- Pakistan in collaboration with GIZ Germany and CITEFA France is working on developing a national Transparency Web Platform to ensure MRV & ETF for managing climate change.
- The platform is dedicated to:
- Monitor the inventory preparation, its ongoing state of play, and the archiving of different past annual editions;
- Store and share the emission inventory results and selected background data/information;
- Report inventory results according to the defined reporting template consistent with the UNFCCC reporting requirements (MPGs and coming CRT format);
- Tracking/recording the Verification and checks QA/QC activities for the national GHG inventories;
- \checkmark Track and monitor adaptation efforts

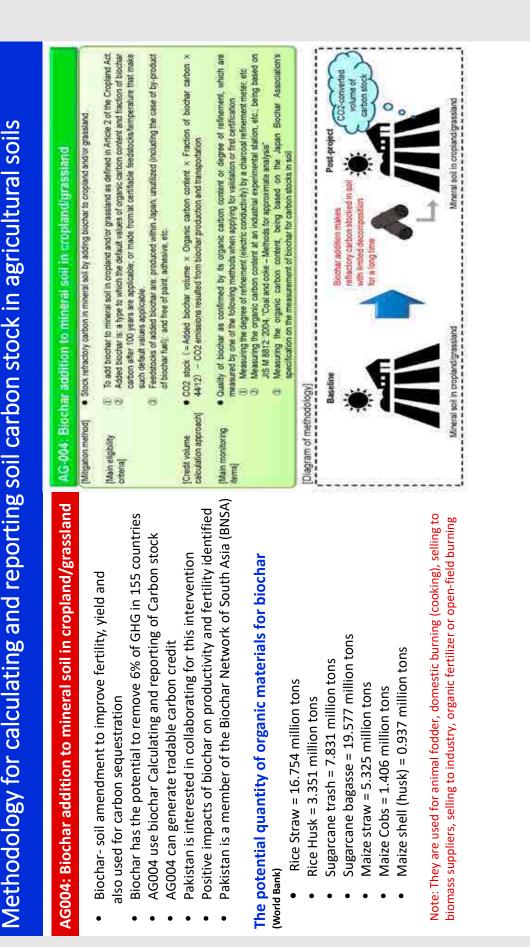
	a set i prime a	*	a modure on we are	5
	a fangan in de sent system in same o daman e d	and a second		۵
5	the parameter of	The state	ne, as an order to set	Ĩ
Adaptation PEW Matan	of the state of	and and a	NOT THE LOOP	drassler
ansperency Platform	1 1	and the second s	And in case of the	1.1
Itanspe	y.			Sing of
RiSC	Example investory. In each date on a set hypera 4 in each e	2	er ben hendeline en andeline het en einer het som det het eine vere het vangenet en en enter einer einer einer	And the second

APPENDIX: PAKISTAN




IMPLEMENTING CLIMATE-SMART AGRICULTURE TECHNOLOGIES: A WAY FORWARD | 171

APPENDIX: PAKISTAN

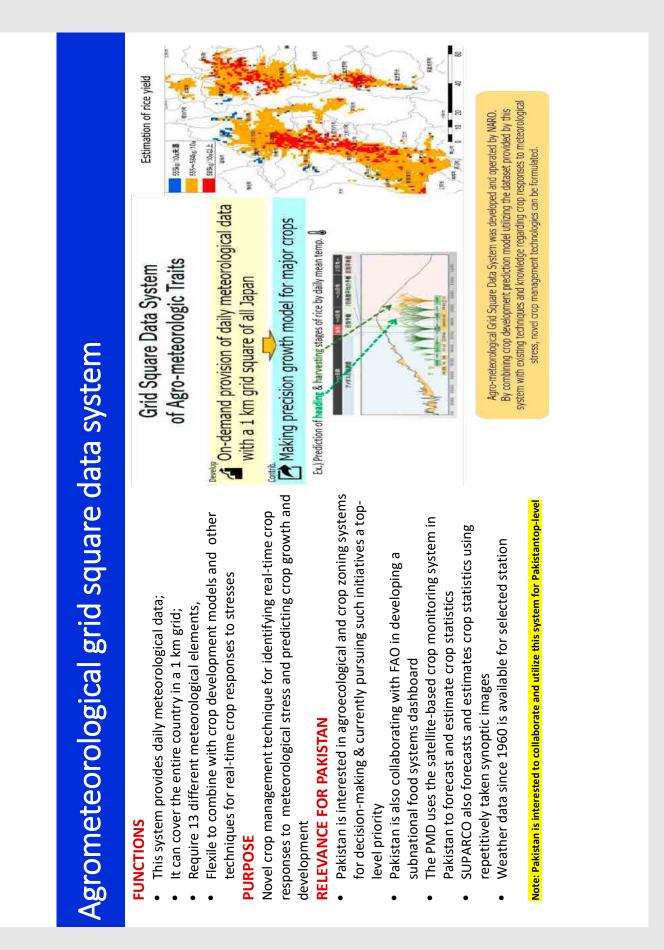


APPENDIX: PAKISTAN

Soil Carbon Sequestration Visualization Tool

FUNTIONS

display total GHG (CH $_4$, N $_2$ O, CO $_2$) emissions (require input Calculate changes in soil carbon content for 20 years and location, crop, organic material management practices). PURPOSE


- Used to calculate soil carbon stock and greenhouse gas emissions
- Identify effects of activities eligible for the Direct Payment for Environmentally Friendly Agriculture •
- their efforts to shift from conventional to environmentally Can be used for direct payment subsidies in exchange for friendly farming, on global warming prevention •

RELEVANCE FOR PAKISTAN

- Highly relevant and most needed -
- micronutrients maps are available for parts of the country Soil texture, NPK content, fertilizer application, and •
- Organic matter maps are not available but short-term experimental data may be available •

Web-based visualization tool for agricultural soil carbon sequestration and GHGs emission

Key stakeholders in climate-smart agriculture

Government Agencies

 \checkmark Ministry of climate change and environmental coordination \checkmark Ministry of national food security and research (MNFS&R) (MOCC&EC)

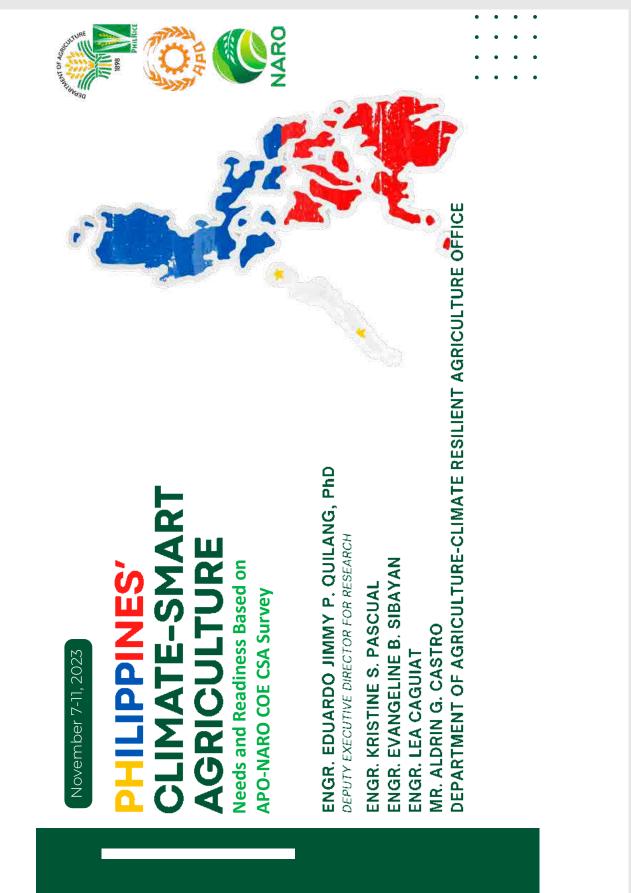
 \checkmark Ministry of Planning Development and Special Initiatives (PD&SI), Provincial Governments – Agriculture ministries/departments

University or Research Institutes

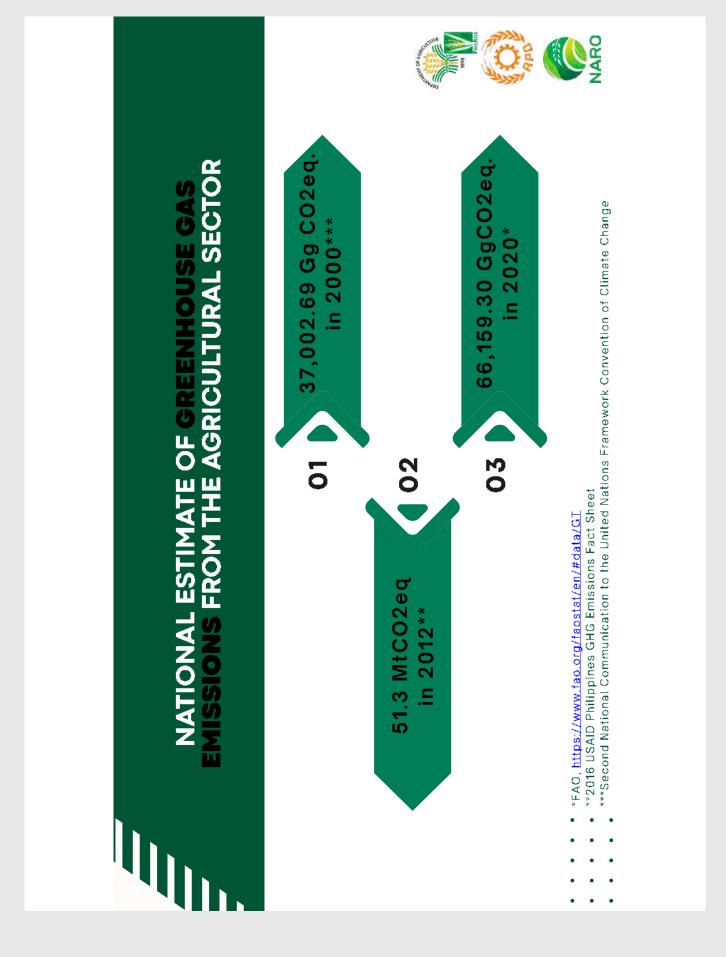
Climate, Energy and Water Research Institute (CEWRI), NARC \checkmark University of Agriculture Faisalabad (UAF)

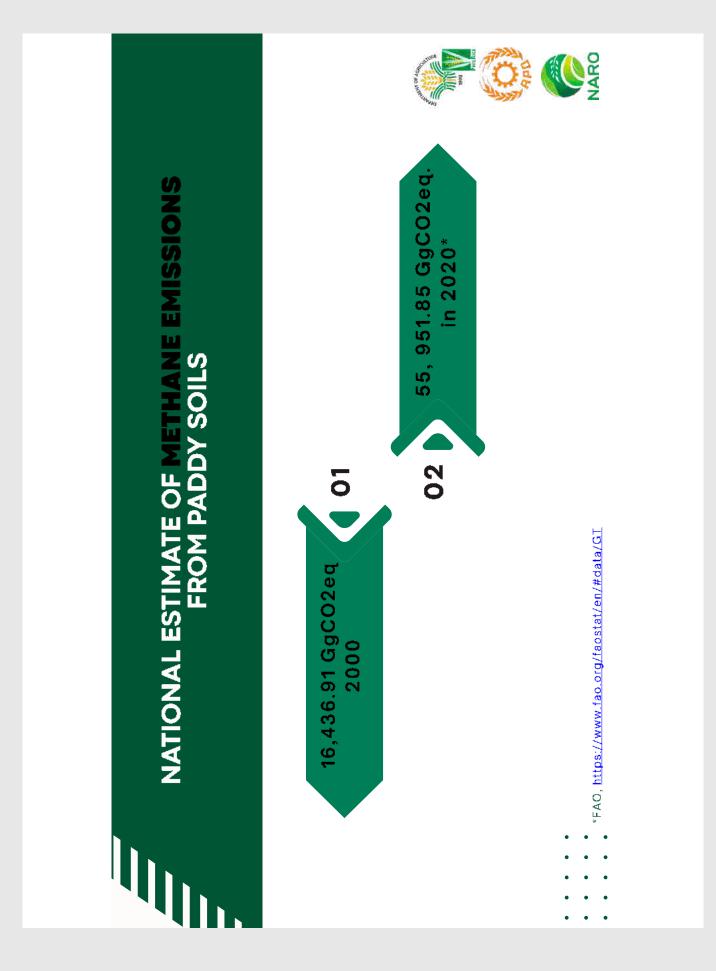
✓ University of Agriculture Peshawar (UAP)

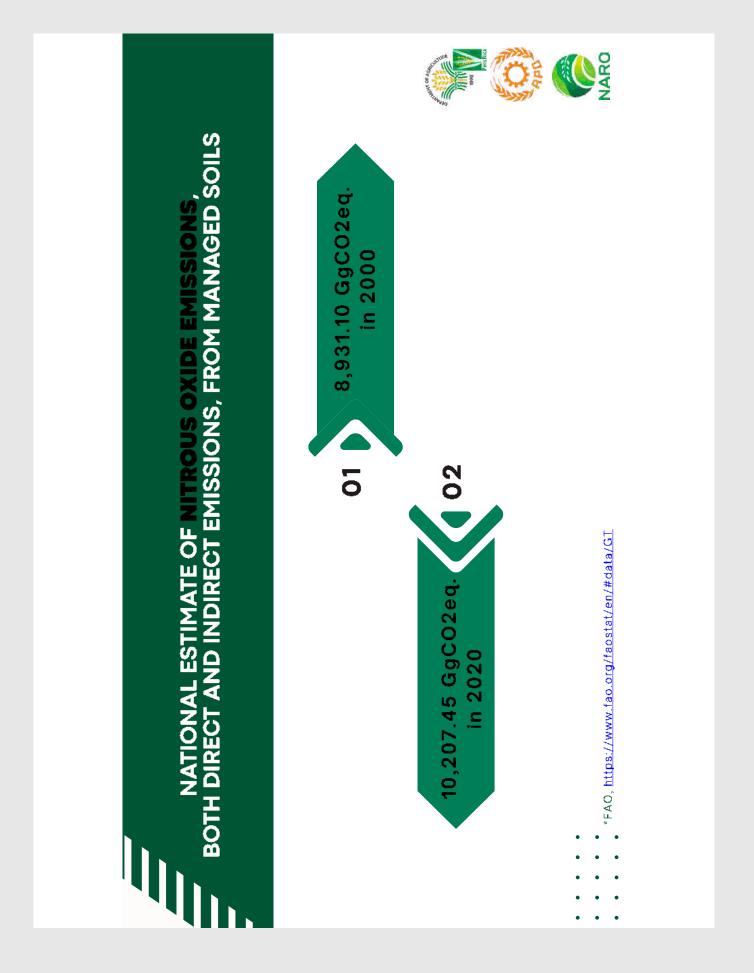
 \checkmark National University of Science and Technology (NUST)


Global Climate Change Impact Study Centre (GCISC)

Major barriers
 Lack of up-to-date GHG emission data and MRV systems
 Lack of effective national database or registry systems for GHG emissions
 Lack of active private sector participation
 No overarching strategy, guidelines or regulatory framework
 Climate-change induced frequent disasters overlook the GHG mitigation efforts
 Lack of strong institutional coordination and capacities in GHG emission reduction
\checkmark Ministries' roles and responsibilities are not clear
 Weak institutional framework
\checkmark Weak collaboration between federal and provincial entities
\checkmark Knowledge gap and awareness issues


 Major potential for GHG emission reduction and Carbon credit earning in the Agriculture, Forestry and land use sectors: Huge potential for GHG emission reduction and Carbon credit earning in the Agriculture, Forestry and land use sectors: Livestock = 109120 Gg CO₂ e Land use = 31520 Gg CO₂ e Land use = 31520 Gg CO₂ e Chanaged soil = 74980 Gg CO₂ e Rice cultivation = 7830 Gg CO₂ e Rice cultivation = 7830 Gg CO₂ e Total = 2,23,450 Gg CO₂ e Total = 2,23,450 Gg CO₂ e Total = 2,23,450 Gg CO₂ e Local expertise and institutions are available for collaboration initiatives
--




THE PHILIPPINES

GOVERNMENT POLICIES OR SUPPORT MEASURES FOR REDUCING GREENHOUSE GAS EMISSIONS FROM THE AGRICULTURAL SECTOR

The **National Greening Program or NGP** is the country's most ambitious reforestation program to date. It seeks to plant 1.5 billion trees in 1.5 million hectares for a period of six (6) years, from 2011 to 2016. Executive Order No. 26, signed on February 24, 2011 by President Benigno S. Aquino III serves as the legal basis for the implementation of the NGP. **Executive Order 193, s. 2015 expands its coverage from 2016 to 2028.**

GOVERNMENT POLICIES, ONGOING ACTIONS, OR FUTURE PLANS FOR METHANE EMISSION REDUCTIONS FROM PADDY SOILS

- Republic Act 9729 also known as the Climate Change Act of 2009 - an Act mainstreaming climate change into government policy formulations, establishing the framework, strategy, and program of climate change.
- Agriculture and Fisheries Modernization Act (AFMA) of 1997 (RA 8435) underscores the importance of integrating climate change plans, weather variability, and annual productivity cycles into formulating and predicting relevant agricultural and fisheries programs.

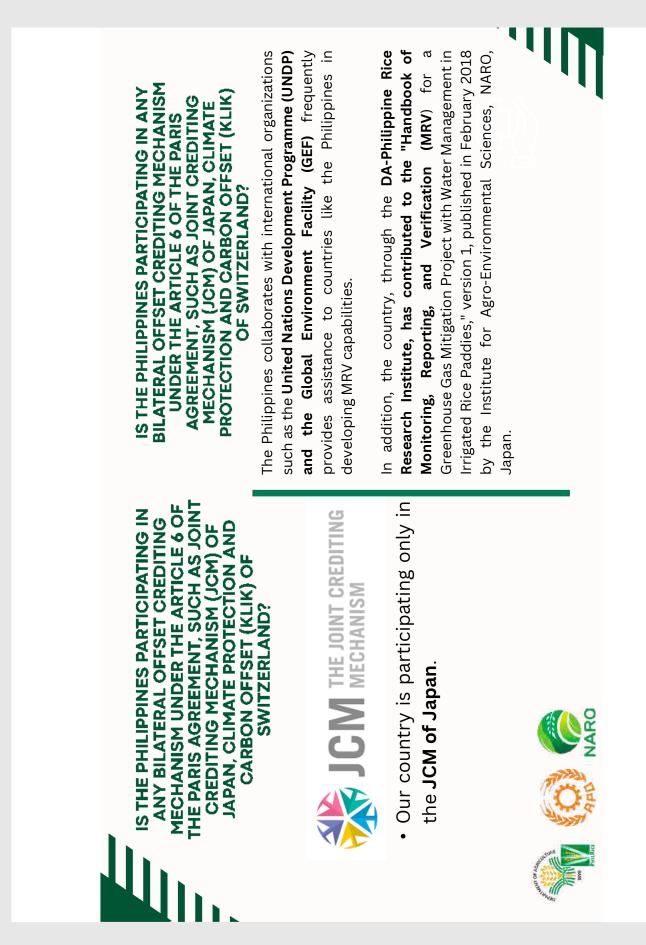
GOVERNMENT POLICIES, ONGOING ACTIONS, OR FUTURE PLANS FOR CARBON SEQUESTRATION IN AGRICULTURAL SOILS

- Republic Act 10068, known as the Organic Agriculture (OA) Act, is a state policy that promotes, propagates, further develops and implements the practice of organic farming in the country addressing farm productivity, depletion of natural resources, and health benefits of both farmers and consumers.
- Philippines NDC PA for carbon sequestration in agricultural soils Implementation of carbon sequestration measures: a) use of organic fertilizers b) use of biochar c) expansion of coconut bands along storm surge prone shores d) rehabilitation/expansion of mangrove areas and e) establishment of bamboo plantation.

NATIONAL CARBON CREDIT TRADING MECHANISMS, INCLUDING VOLUNTARY EMISSION REDUCTION PROGRAMS, FOR PROMOTING GREENHOUSE GAS EMISSION REDUCTIONS AND REMOVALS

- Carbon trading venture through the initiative of the Philippine Rice Institute (PhilRice) along with the National Irrigation Administration (NIA), in partnership with Ostrom Climate Solution Inc.
- PCAF Resolution No. 7 series of 2023 "Recommending to the DA, through Climate Resilient Agriculture Office (CRAO) and DENR to spearhead the establishment of Guidelines/Standards on Carbon Credit Trading for the Agri-Fisheries Sector.
- DA PhilRice, CRAO on Alternate Wetting and Drying (AWD) Carbon Credit

- One of these projects is intended for registration with the Verified Carbon Standard (VCS) using VM0042 -Improved Agricultural Land Management under Article 6.4 of the Paris Agreement.
- The second project is slated for registration once the Joint Crediting Mechanism (JCM) agreement between the Philippines and Japan is established, and it will fall under Article 6.2 of the Paris Agreement.



IS THE PHILIPPINES PARTICIPATING IN THE **CLEAN DEVELOPMENT MECHANISM (CDM)**?

Our country is participating in the CDM, Department of Environment and Natural Resources (DENR) as the designated national authorities (DNA) for the CDM in the Philippines

- Project/projects related to the treatment of animal waste.
- Project/projects related to the utilization of animal waste or agricultural residues for electricity generation.



GREENHOUSE GAS VALIDATION AND VERIFICATION BODIES, WITH OR WITHOUT UNITED NATIONS CERTIFICATION IN THE PHILIPPINES

validation and verification body. GHG validation and verification processes are typically carried out following internationally accepted and approved standards and protocols. Government agencies, research institutions, and private consultancies may perform GHG validation and verification activities following The Philippines does not yet have a dedicated national greenhouse gas (GHG) established international guidelines. The country will adhere to internationally approved guidelines issued by the **UNFCCC** when implementing projects for emission reductions and removals. One GHG Measurement from Rice Cultivation," for which the country has also made such example is the "Guidelines on the Use of the Closed Chamber Method for contributions as an author through the DA-Philippine Rice Research Institute.

APPENDIX: THE PHILIPPINES

REDUCTIONS FROM PADDY SOILS IN THE PHILIPPINES? HOW IMPORTANT IS THE METHANE EMISSION

This is reflected in research results by IRRI and PhilRice conducted from 1994 to 1998 -Methane Emission from Irrigated and Intensively managed rice fields in Central Luzon, Philippines (2000) by Corton et.al. as well as by Sibayan et.al 2018 - Effects of Alternate Wetting and Drying technique on GHG emissions from irrigated rice paddy in Central Luzon, Philippines.

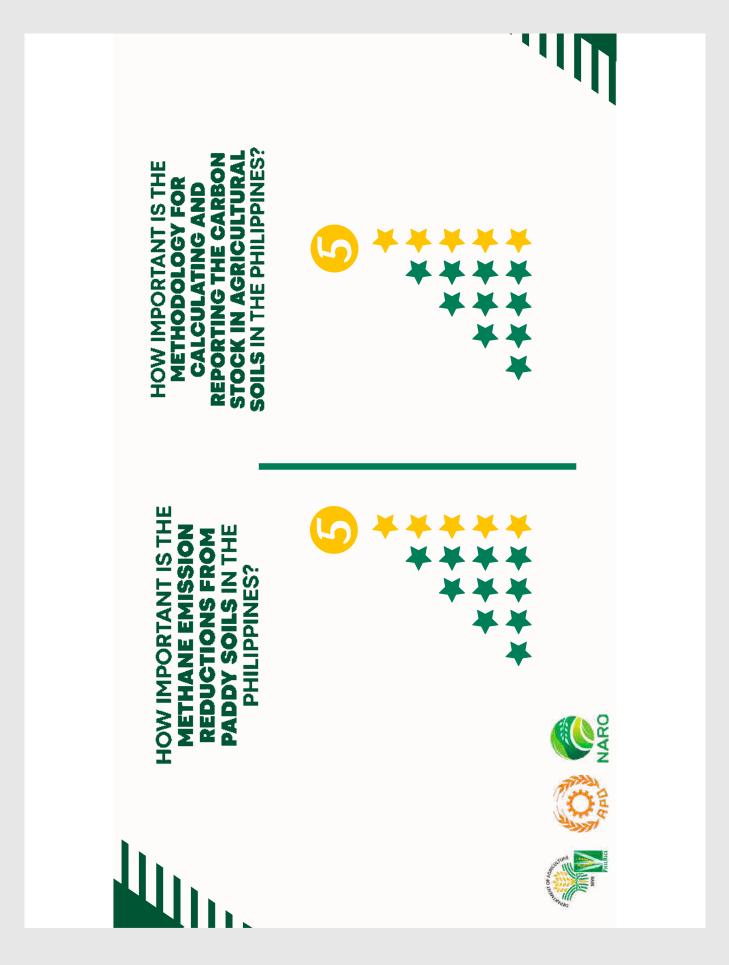
- Water management
- Soil/organic matter management
- Other agronomic management
- Land use change

Others:

- Direct Seeding
- Aerobic Rice
- CSA (i.e., Precision Agriculture)

METHANE EMISSIONS FROM PADDY SOILS ASSOCIATED **CALCULATING AND REPORTING THE REDUCTION OF** SHARED OR APPROVED METHODOLOGIES FOR WITH THE TECHNOLOGIES MENTIONED

Baseline for Methane Emissions in Rice Cultivation in the Republic of Yes. The approved Standardized Baseline ASB0008 "Standardized the Philippines".


'Methane emission reduction by adjusted water management practice Programme (UNDP). The specific methodology is the "AMS-III.AU.: in rice cultivation" (Version 4.0)" which was entered into force on for CDM (DNA) in cooperation with the United Nations Development October 6, 2020, and with a validity of five years (until February 19, The SB was developed by the Philippine Designated National Authority 2025).

*https://cdm.unfccc.int/methodologies/standard_base/2015/sb175.html

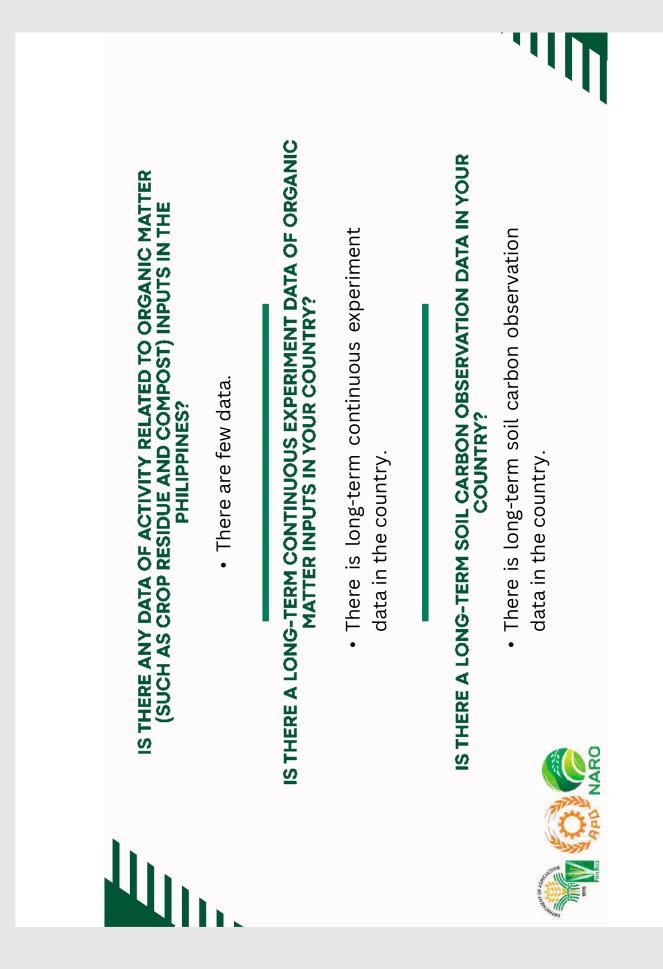
OW LARGE IS THE POTENTIAL AREA OF PADDY FIELDS AT CAN IMPLEMENT WATER MANAGEMENT PRACTICES FOR REDUCING METHANE EMISSIONS FROM PADDY SOILS IN THE PHILIPPINES?	 70% (Irrigated Area (2022): 3.34 million ha, National (2022): 4.80 million ha) 	Source: https://www.philrice.gov.ph/ricelytics/harvestareas	
HOW LARGE IS THE POTENTIAL AREA OF F HOW LARGE IS THE POTENTIAL AREA OF F THAT CAN IMPLEMENT WATER MANAGEME FOR REDUCING METHANE EMISSIONS F SOILS IN THE PHILIPPINES?	 All irrigated rice area - 3.29 M ha of the total 4.8 million ha of area harvested (PSA, 2018). 	 The potential area (all irrigated rice area) which is included in the Philippines NDC PAMs is about 68%. 	

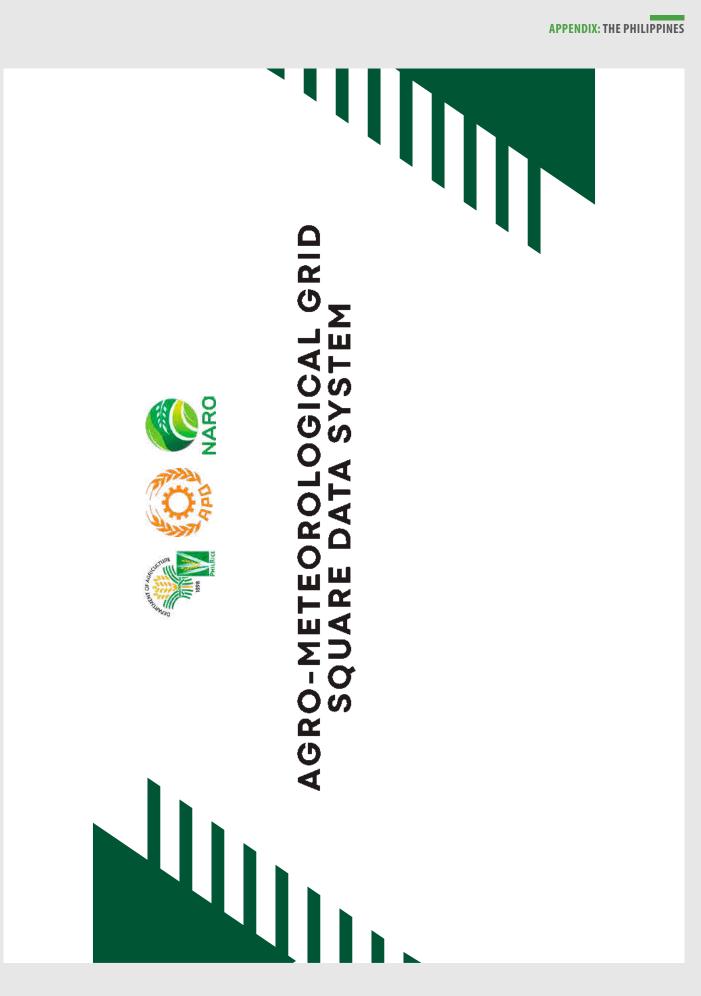
IRRI https://news.irri.org/2018/06/ricestrawphhttps://www.philrice.gov.ph/ricelytics/producti https://www.philmech.gov.ph/assets/publicat content/uploads/2022/09/Sugar-Stats-as-ofon/Annual%20Report/PHilMech%20Annual% Estimated quantity of the potential organic materials Reference **Philippine Center for Postharvest Development and Mechanization** https://www.sra.gov.ph/wp-Sugar Regulatory Authority **Philippine Sugar Statistics** irri-teams-up-with.html OReport%202018.pdf The table below shows the estimated quantity of the potential organic materials from the 08-21-2022.pdf **PhilRice** ons 2018 2022 2021 Year (calculated by 11 tons of agricultural production in 2022 x 0.2 ton/ton of by 19.76 million metric tons of rice 3,952,000 metric tons (calculated 397,524 ha planted to sugarcane wastes in the form of leaves and 4,372,764 metric tons based on stalks per one hectare of land 11,000,000 metric tons Residue-to-crop ratio) planted to sugarcane) Quantity agricultural sector of the Philippines. Sugarcane bagasse **Organic materials** from agricultural **Rice straw Rice husk** sector

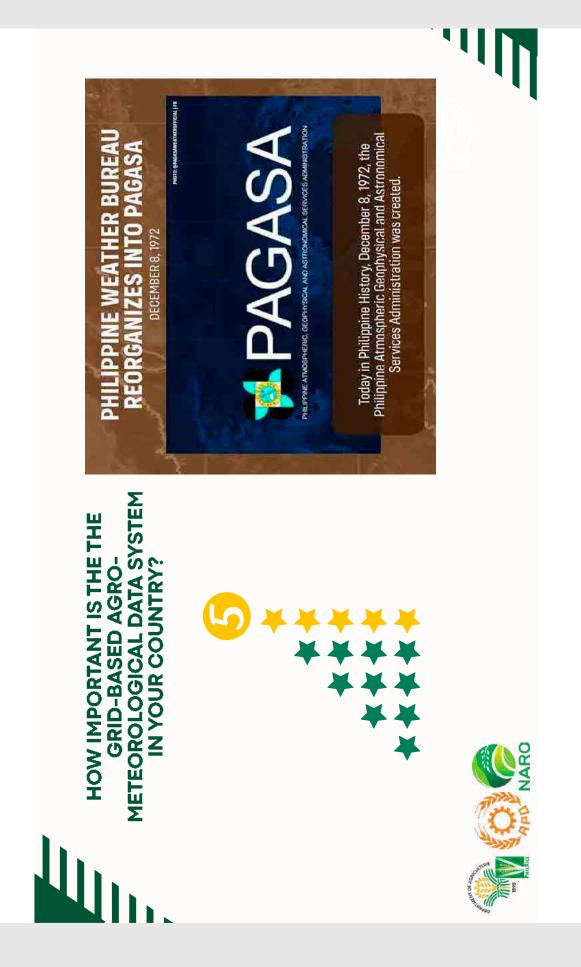
Reference	PSA OpenSTAT (https://openstat.psa.gov.ph/PXWeb/pxweb/en/DB/ DB_2E_CS/0012E4EVCP0.px/table/tableViewLayou t1/?rxid=bdf9d8da-96f1-4100-ae09-18cb3eaeb313)	Philippine Statistics Authority https://openstat.psa.gov.ph/PXWeb/pxweb/en/DB/D B_2E_LP_INV_NEW/0022E4FINC2.px/table/tableVi ewLayout1/?rxid=bdf9d8da-96f1-4100-ae09- 18cb3eaeb313 UGA Extension https://extension.uga.edu/publications/detail.html?n umber=B1245&title=maximizing-poultry-manure-	use-through-nutrient-management-planning Philippine Statistics Authority https://openstat.psa.gov.ph/PXWeb/pxweb/en/DB/D B_2E_CS/0062E4EVCP1.px/table/tableViewLayout /?rxid=bdf9d8da-96f1-4100-ae09-18cb3eaeb313
agricultural sector of the Philippines. materials from the potential organic materials from the agricultural sector of the Philippines. materials Quantity Year I	2022	2022	2022
Quantity	1,486,009.74 metric tons based on 8,255,609.68 metric tons of corn produced in 2022 (calculated by 18 kg of corn cob produced from 100 kg of	corn ear) 934,073.82 metric tons based on 821,984,973 heads of chicken and duck in 2022 (calculated by 1.14 kg of manure production per head)	6,400,000 metric tons based on (Ave. weight of husk of coconut fruit is 0.4kg multiplied by 14,931,158.30 coconuts produced in 2022)
Organic materials from agricultural	sector Corn cobs	Poultry manure	Coconut husk

Reference	N/A	N/A	N/A	N/A	N/A	N/A
otential orga Philippines ^{Year}	N/A	N/A	N/A	N/A	N/A	N/A
ate of the post octor of the Utilization rate	No data	No data	No data	No data	No data	No data
Competing uses and utilization rate of the potential organic materials from the agricultural sector of the Philippines c materials gricultural competing users Utilization Year R	Bioenergy, biofuel, mushroom production, animal feed, feed	Biochar, fuel, bedding	Fuel, raw materials for paper, feed, molasses	Fuel, bioenergy feedstock	Fuel, fertilizer, feed	Cocofiber, fuel, particle, board, ropes
Compet material	Rice Straw	Rice husk	Sugarcane bagasse	Corn cobs	Poultry manure	Coconut husk

APPENDIX: THE PHILIPPINES


IS THERE A SOIL MAP IN YOUR COUNTRY?


• There is a soil map that covers the entire country.


AVAILABLE SOIL MAP DATA IN THE PHILIPPINES

- Clay content
- Carbon content
- Organic matter content
- Bulk density

9

AGRO-METEOROLOGICAL DATA SYSTEM IN THE PHILIPPINES **GOVERNMENT POLICIES OR PLANS THAT SUPPORT**

The Republic Act No. 10692- An Act providing for the modernization of the climate data collection, dissemination, and capacity-building for various PAGASA is the government agency responsible for weather forecasting and monitoring. They have ongoing programs to improve meteorological and Philippine Atmospheric, Geophysical and Astronomical Service (PAGASA) sectors, including agriculture.

NARO

Moreover, different government agencies have also various plans, programs and policies that support and complement the agro-meteorological data system in the country. For example, the DA-Philippine Rice Research nstitute has institutionalized the Philippine Rice Information System (PRISM), which harnesses satellite technology and agro-meteorological data to deliver timely information to rice farmers. This empowers the rice farmers to make well-informed decisions pertaining to rice production.

including remote sensing, information disease Reinvigorate Agriculture as an Industry in the aims to modernize and enhance the agricultural sector in the country through the application of advanced technology, and data analytics. It provides farmers and policymakers with valuable information and tools to crop nanagement, and increase agricultural productivity. The project leverages data-driven insights and technology to ⁻urthermore, the SARAI project (Smarter Approaches to address various challenges in Philippine agriculture, Philippines) is an initiative under the Department of Science and Technology (DOST) in the Philippines. SARAI decisions, improve and management, and overall farm efficiency pest forecasting, make more informed crop technologies, including

AGRO-METEOROLOGICAL DATA SYSTEM IN THE PHILIPPINES GOVERNMENT POLICIES OR PLANS THAT SUPPORT

AGRO-METEOROLOGICAL DATA SYSTEM IN THE PHILIPPINES GOVERNMENT POLICIES OR PLANS THAT SUPPORT

Partnership with Sagri Company Ltd. was founded in 2018 in Japan.

Sagri has developed AI and machine learning technologies for automatic Polygon Technology for Agricultural Land and the detection of soil properties of farmland. The company is actively developing NVDI (Normalized Difference Vegetation Index) for farmlands to provide a comprehensive understanding of crop growth at a glance.

GRID-BASED AGRO-METEOROLOGICAL DATA SYSTEM AVAILABLE IN THE PHILIPPINES AND ITS SPATIAL AND TEMPORAL RESOLUTIONS

The Philippine Rice Information System (PRISM), jointly developed by the International Rice Research the centralized operation of PRiSM was transitioned to PhilRice. The establishment and operation of the Institute (PhilRice) and the Philippine Department of Agriculture, uses satellite imagery and other new PRISM Unit were carried out by the Department of Agriculture (DA) through an Administrative Order, echnologies to generate information on planted rice area, seasonality, yield, and risks to crops. In 2018, while the continued implementation of PRiSM at the DA Regional Field Offices nationwide. https://prism.philrice.gov.ph/

Another is the SARAI project (Smarter Approaches to Reinvigorate Agriculture as an Industry in the works towards reducing climate risks by providing agricultural stakeholders with site-specific crop - Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development that **Philippines)** which is an action-research program, funded by the Department of Science and Technology advisories for rice, corn, banana, coconut, coffee, cacao, sugarcane, soybean, and tomato. https://sarai.ph/about-us The Agrometeorological Station (Agro-Met) is another derivative station using the advanced remote ntensity, soil moisture and temperature, solar radiation, and sunshine duration. The station gets data measure wind speed and direction; air temperature; air humidity; air pressure, rain amount, duration and data-acquisition unit (arQ) geared with multi-parameter weather sensors which can simultaneously from the sensor for transmission via SMS or Satellite network

GRID-BASED AGRO-METEOROLOGICAL DATA SYSTEM AVAILABLE IN THE PHILIPPINES AND ITS SPATIAL AND TEMPORAL RESOLUTIONS

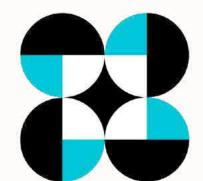
- In the Philippines, meteorological observations are carried out at about 90 weather stations.
- There are **56 stations that are characterized as synoptic and radar stations while 34 are characterized as agrometeorological stations**. These stations are maintained and operated by the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA).
- In addition, there are about 104 Automated Weather Stations (AWS) strategically situated throughout the country.

Inaugurated by President Benigno "Noynoy" Aquino last May 2, 2012, the **PAGASA-DOST Weather Radar Station in Brgy. Buenavista, Municipality of Bato, Catanduanes** is considered as one of the most advanced radar station in the world. It is the eight radar station installed in the country at an estimated cost of 500 million pesos with funding from **Japan International Cooperation Agency (JICA)**.

STATIONS IN THE PHILIPPINES WITH INFORMATION REGARDING LIST OF WEATHER ELEMENTS AVAILABLE FROM THE WEATHER TIMESTEP AND OBSERVATION PERIODS OF EACH WEATHER ELEMENT

- Element: Mean air temperature, Timestep: Daily, Observation periods: 1985-present
- Element: Minimum air temperature, Timestep: Daily, Observation periods: 1985-present
- Element: Maximum air temperature, Timestep: Daily, Observation periods: 1985-present
 - Element: Relative humidity, Timestep: Hourly, Observation periods: 1985-present
- Element: Wind speed, Timestep: Hourly, Observation periods: 1985-present
- Element: Wind direction, Timestep: Hourly, Observation periods: 1985-present
 - Element: Precipitation, Timestep: Daily, Observation periods: 1985-present

Source: PAGASA (https://www.pagasa.dost.gov.ph/


IST KEY GOVERNMENT AGENCY IN CLIMATE-SMART AGRICULTURE AND ITS EFFORTS TO REDUCE AND ABSORB GREENHOUSE GAS OR ADAPT TO CLIMATE CHANGE IN THE AGRICULTURAL SECTOR

elated challenges, including the development of climate-smart technologies. Additionally, the Department of Agriculture (DA) develops comprehensive initiatives to address climate change in department has been actively engaged in capacity-building and awareness campaigns to empower farmers with knowledge and tools for climate adaptation. The multifaceted approach aims to both mitigate emissions and help the agricultural sector adapt to the changing climate. The department also provides some funds to implement a few exploratory research on GHG measurements from the agricultural sector and implements measures to enhance the resilience of farmers to climateanimals and rice paddies.

⁻urthermore, the **Philippine Rice Research Institute (PhilRice)**, an attached agency to the DA is the premier research body that conducted research on GHG emissions from rice paddies together with RRI (1994-2000) and NARO-MAFF, Japan (2013-2017). The institute is the only government agency that has trained, experienced, and competent staff to implement GHG measurement projects in the country as defined by the UNFCCC.

instruments and agencies of the department implements seven programs that include Climate-Smart Agriculture Infrastructure, Financing and Risk Transfer Instruments on Climate Change, Climate-Smart Agriculture and Fisheries Regulations and Climate-Smart Agriculture Mainstreaming Climate Change Adaptation and Mitigation Initiative in Agriculture, Climate Change nformation System, Philippine Adaptation and Mitigation in Agriculture Knowledge Toolbox, Moreover, the **Climate Resilient Agriculture Office (CRAO)** of DA that cuts across policy Extension System

Department of Science and Technology (DOST) supports research and development initiatives related to climate science, weather forecasting, and the development of climate-resilient technologies for agriculture.

Climate Change Commission (CCC) is the government agency responsible for coordinating climate change policies and programs. They work on developing strategies and action plans to reduce greenhouse gas emissions across all sectors, including agriculture.

Ostrom Climate Solutions Inc., Vancouver Canada, provide members of Irrigators Associations in the Upper Pampanga River Integrated Irrigation Systems with capacity buildings and support for the adoption of alternate-wetting and drying (AWD) technology through farmer field school, and eventually generate carbon credits from which incentives for participating farmers is derived.

CLIMATE


OSTROM

APPENDIX: THE PHILIPPINES

2ND KEY PRIVATE ENTERPRISE IN CLIMATE-SMART AGRICULTURE AND ITS EFFORTS TO REDUCE AND ABSORB GREENHOUSE GAS OR ADAPT TO CLIMATE CHANGE IN THE AGRICULTURAL SECTOR

Creattura

Waste X, Supports agricultural producers in the Philippines to utilize biomass waste while generating additional income and reducing carbon emissions.

KEY UNIVERSITY OR RESEARCH INSTITUTE IN CLIMATE-SMART AGRICULTURE AND ITS EFFORTS TO REDUCE AND ABSORB GREENHOUSE GAS OR ADAPT TO CLIMATE CHANGE IN THE AGRICULTURAL SECTOR IST

has rice climate-smart rice varieties and sustainable and production, including the development of MAFF, Japan (2014-2017) on several projects farming practices that reduce emissions and partnered with IRRI (1994-2000) and NAROrelated to mitigating GHGs and adaptation to climate resilience. PhilRice activities focused on research **DA-Philippine Rice Research Institute** conducts climate change development (DA-PhilRice) enhance

NARO

Q:

E Sorb	URAL RD)	ure 4.0 briority n and re and	
2ND KEY UNIVERSITY OR RESEARCH INSTITUTE IN CLIMATE- SMART AGRICULTURE AND ITS EFFORTS TO REDUCE AND ABSORB GREENHOUSE GAS OR ADAPT TO CLIMATE CHANGE IN THE AGRICULTURAL SECTOR	PHILIPPINE COUNCIL FOR AGRICULTURE, AQUATIC AND NATURAL RESOURCES RESEARCH AND DEVELOPMENT (DOST-PCAARRD) DEPARTMENT OF SCIENCE AND TECHNOLOGY	DOST-PCAARRD supports R&D agenda related to Agriculture 4.0 which is smart, green and S&T-based. One of their priority projects is geared towards Climate Change Adaptation and Mitigation, and Disaster Risk Reduction in the agriculture and forestry sectors.	

SMART AGRICULTURE AND ITS EFFORTS TO REDUCE AND ABSORB **3RD KEY UNIVERSITY OR RESEARCH INSTITUTE IN CLIMATE-**GREENHOUSE GAS OR ADAPT TO CLIMATE CHANGE IN THE AGRICULTURAL SECTOR

University of the Philippines Los Baños (UPLB) is one of the country's premier agricultural universities and has various research units and departments dedicated to agricultural and environmental sciences. They also conduct research on climate-resilient crop varieties, sustainable farming practices, and environmental conservation. **Central Luzon State University (CLSU)** conducts research on Climate Change, Established the **Institute of Climate Change and Environmental Management (ICCEM)** and included subjects in their curriculum, also offers MS degree in Environmental Science.

HIN

Research Institute

ർ

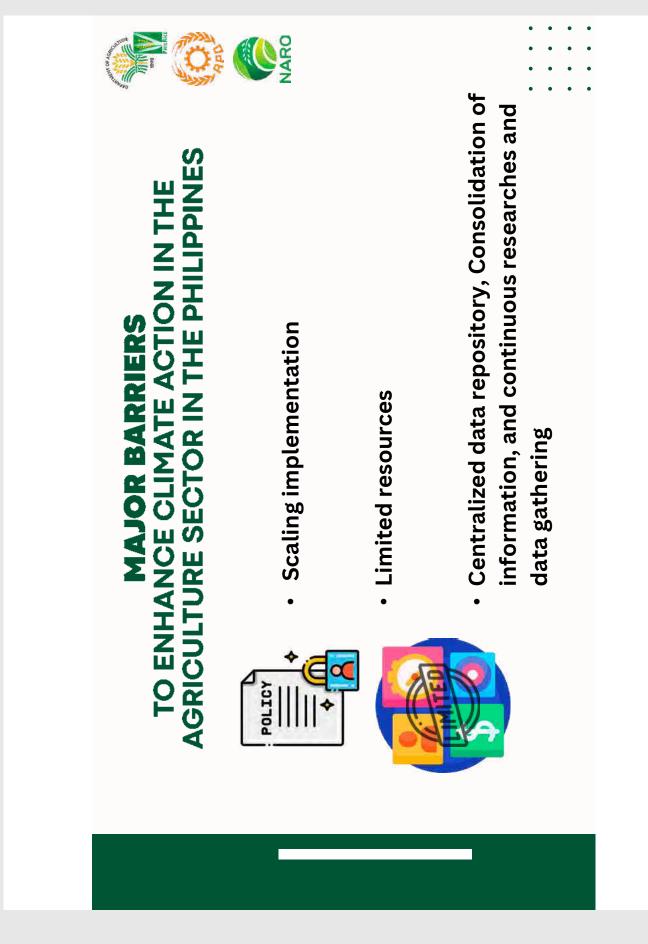
International Rice

esearch to reduce methane emissions from rice

fields and is the pioneering organization in the

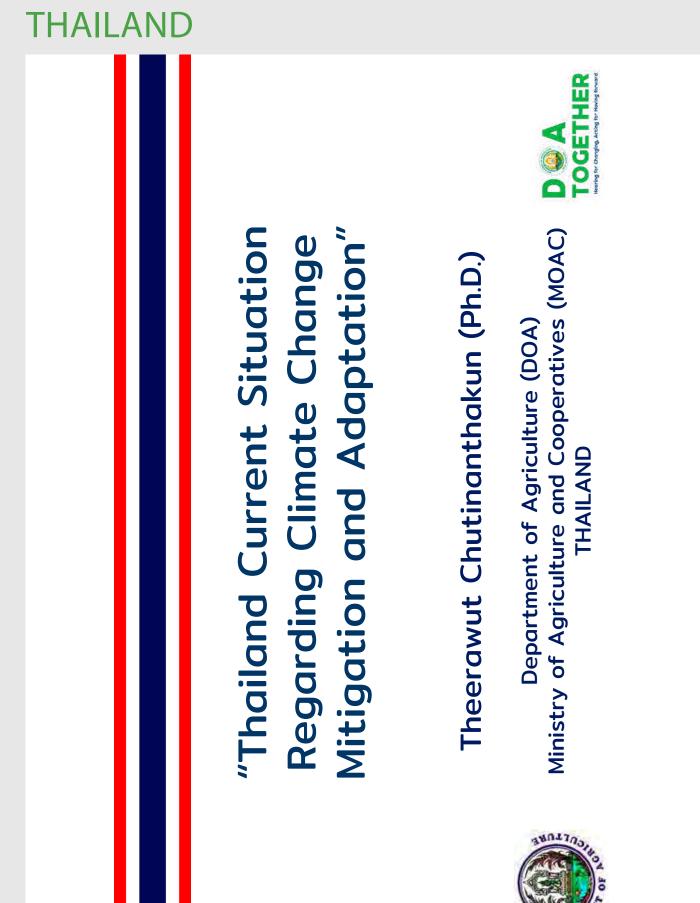
research and development of AWD which is

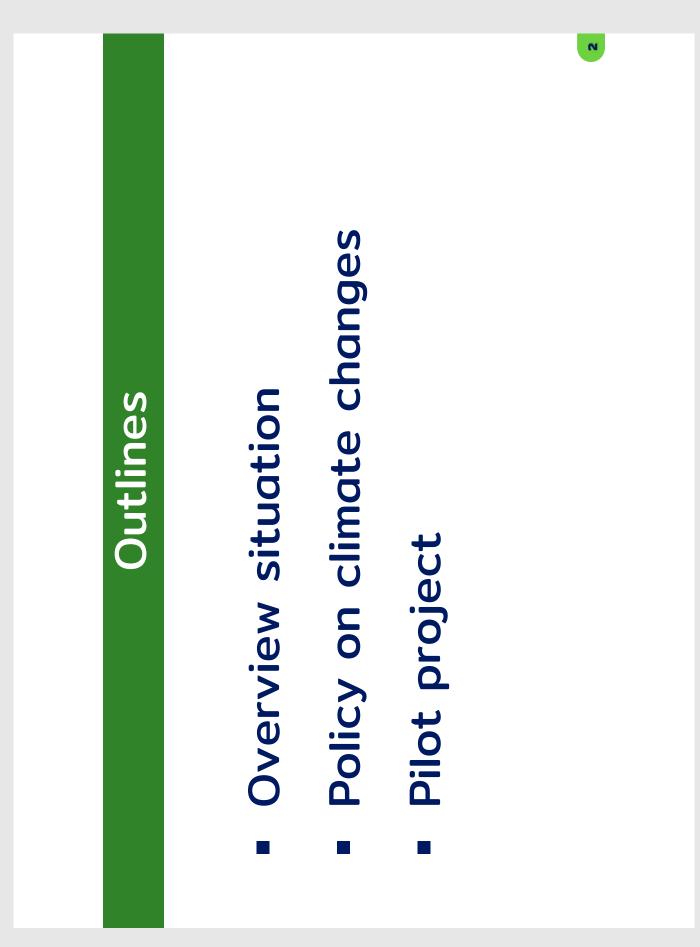
widely known water-saving technique in Asia.

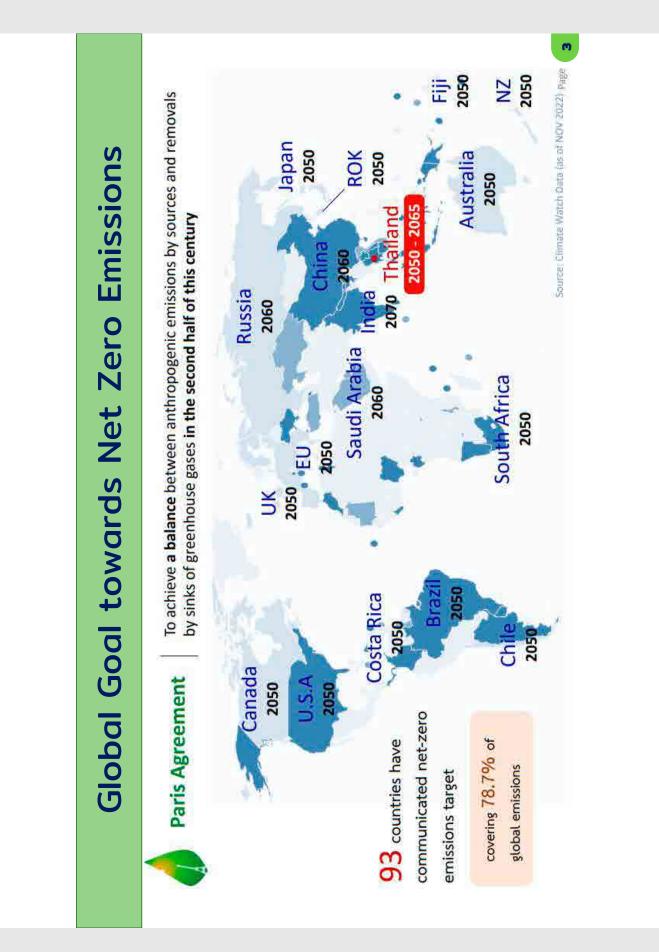

peak emission by 2030 and reduce greenhouse gas emissions, and increase resource use Climate Change Action Program in support of the Government of the Philippines' implementation of its Determined Contribution which is projected to have a efficiency. It provides a policy-based loan for the national climate policies, including its Nationally emissions by 75% from business-as-usual, with a just to climate-smart agriculture in the Philippines, which aim to enhance the resilience of agricultural systems, transition to an inclusive, low-carbon, and climate- and disaster-resilient economy. reduce

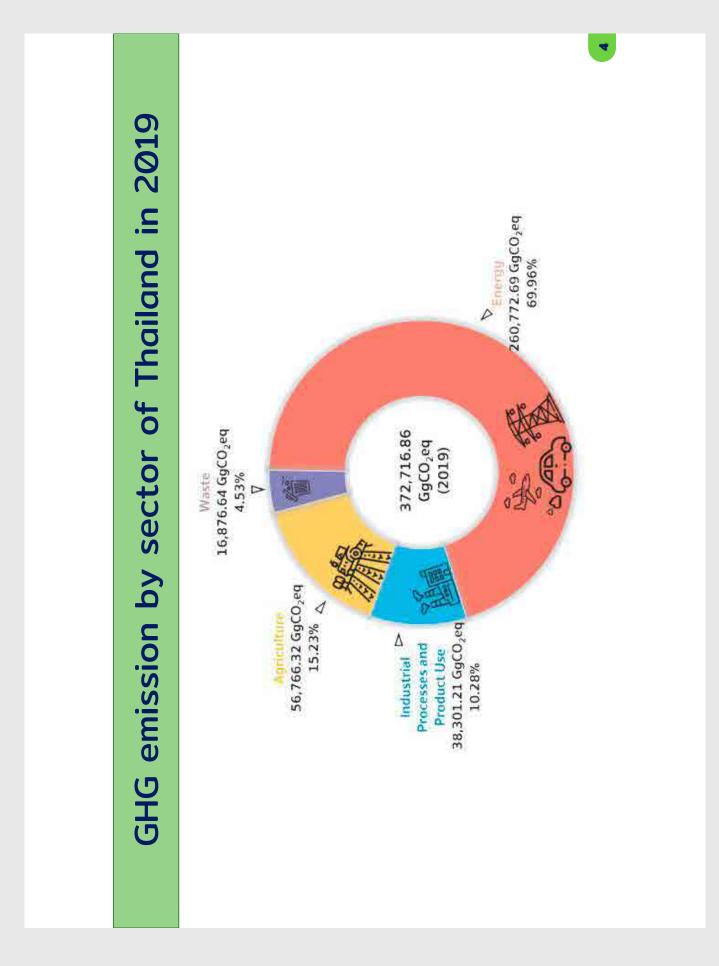
VARO

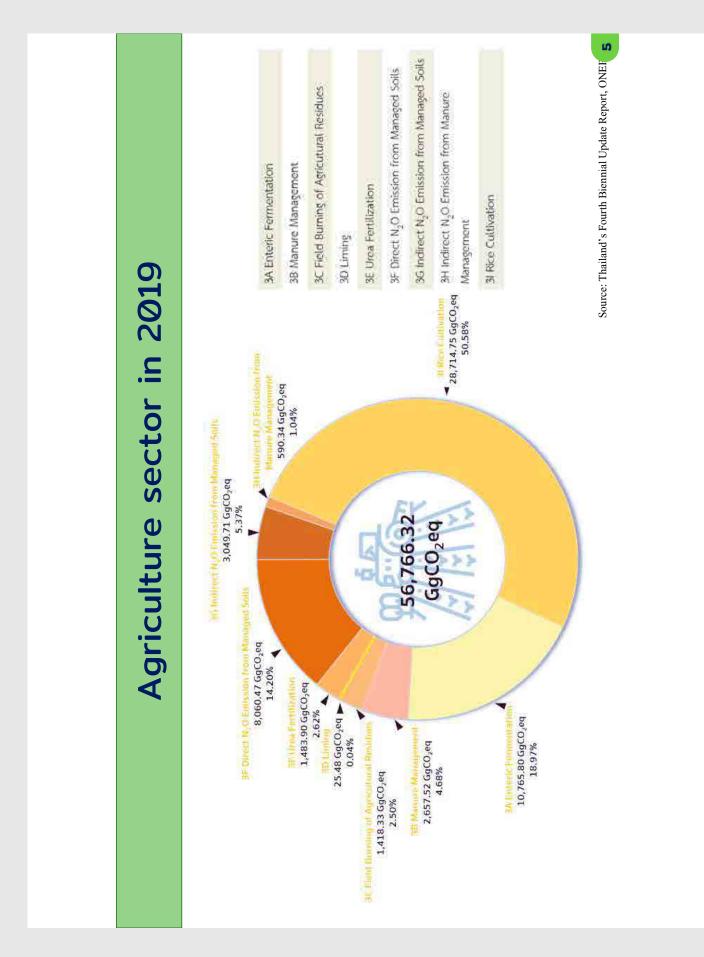
Ö

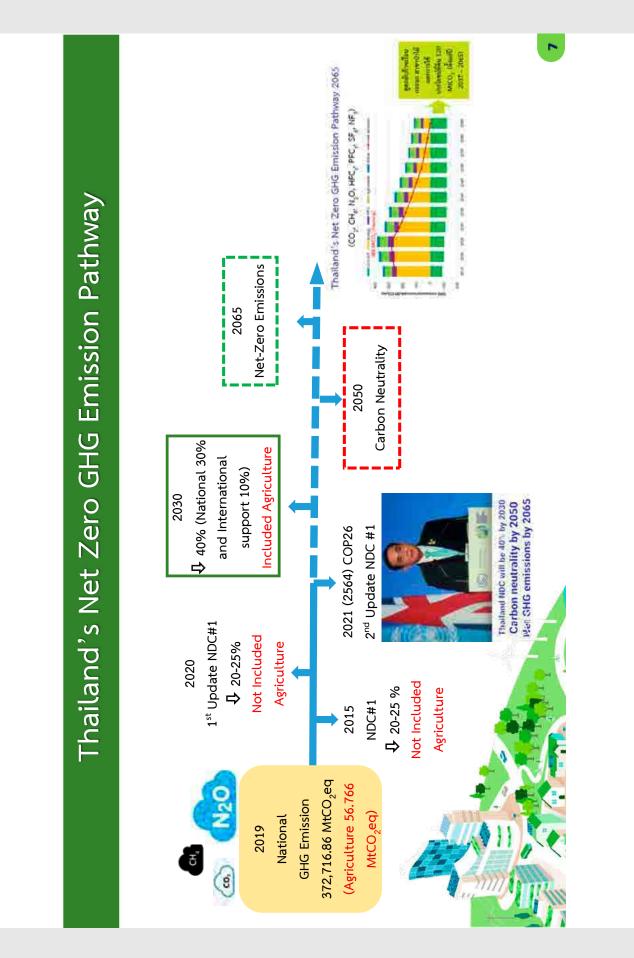

Asian Development Bank

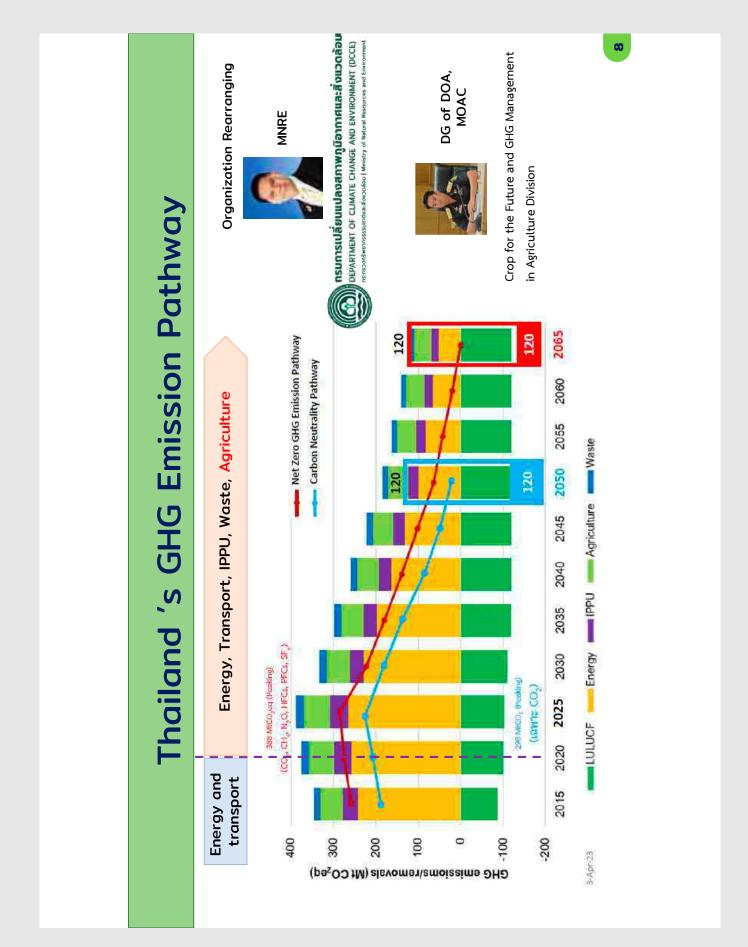


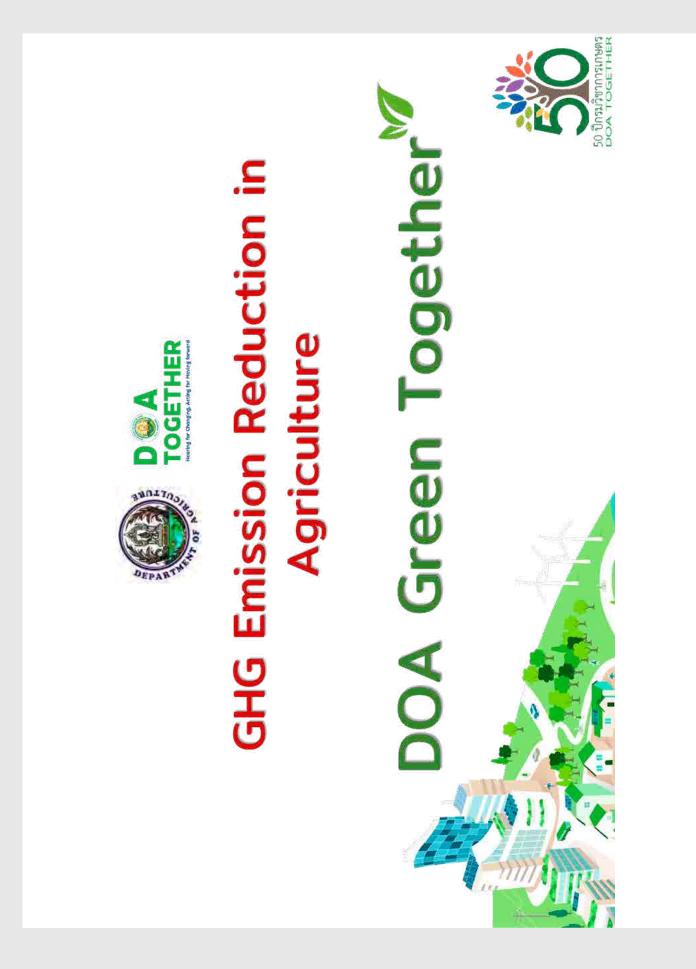


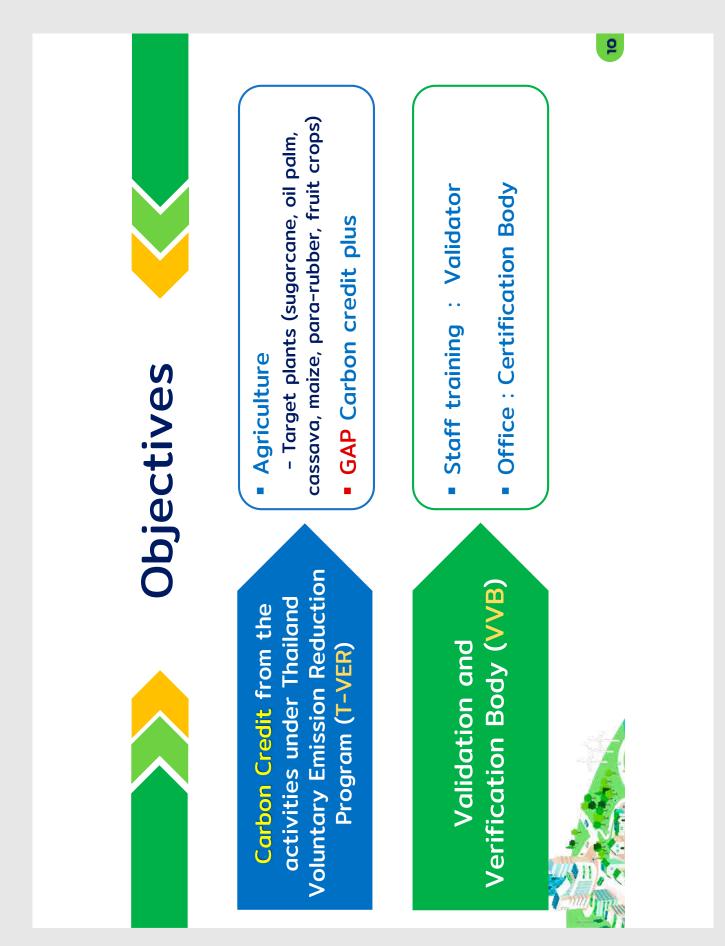


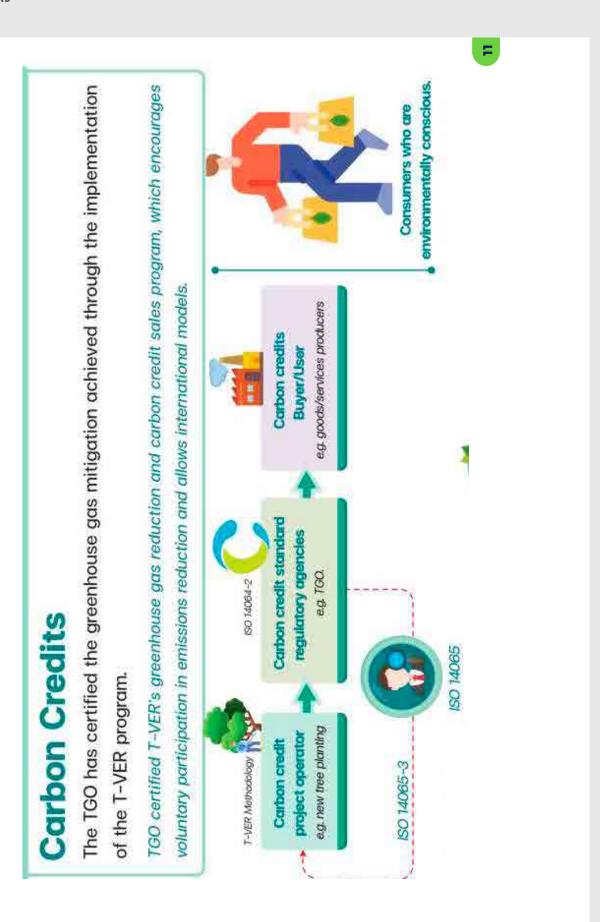


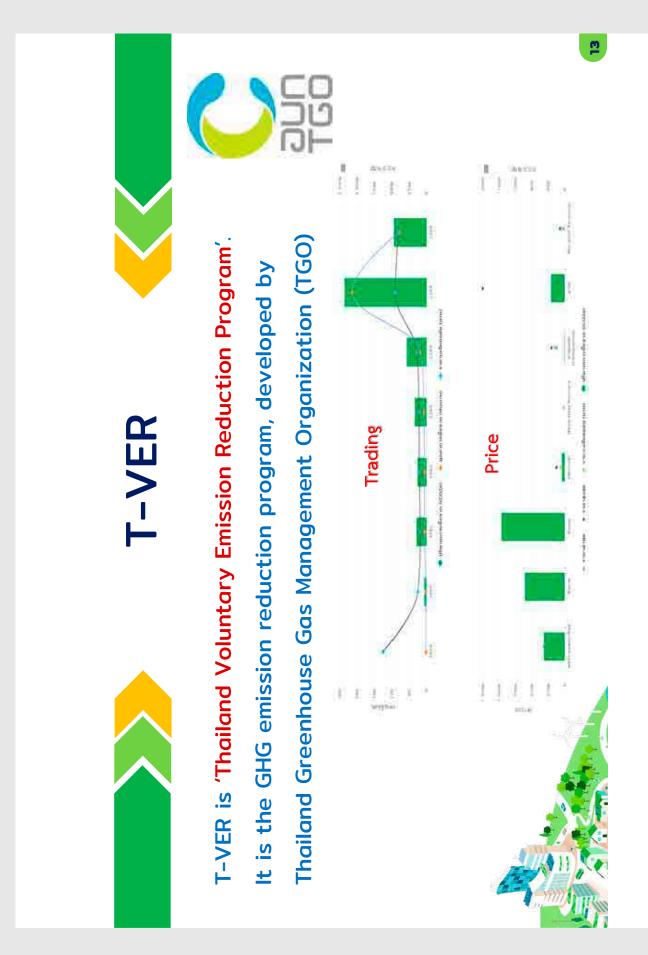


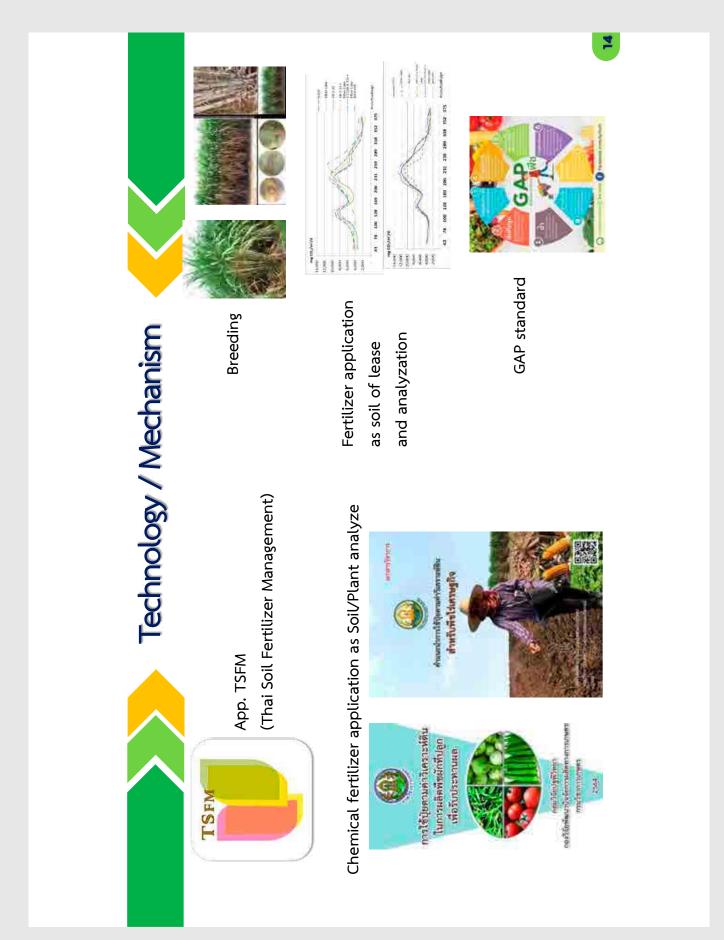


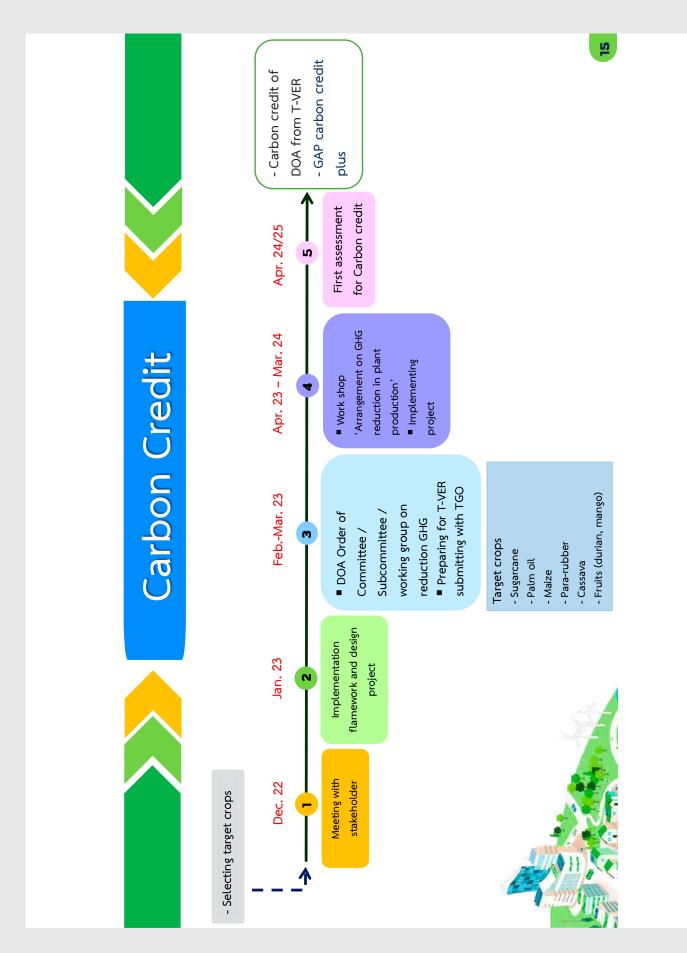




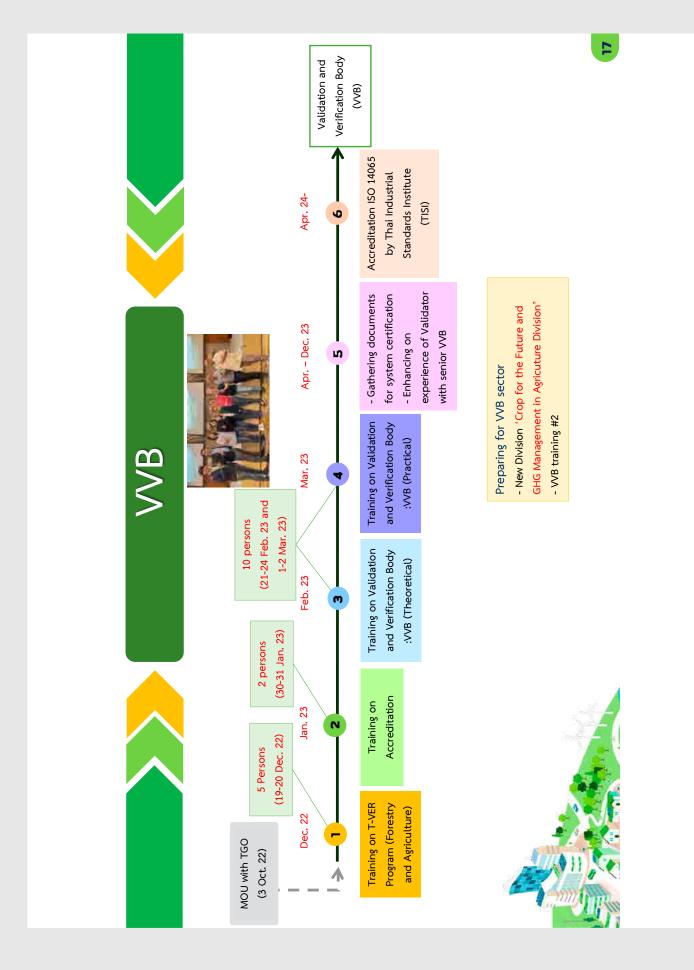


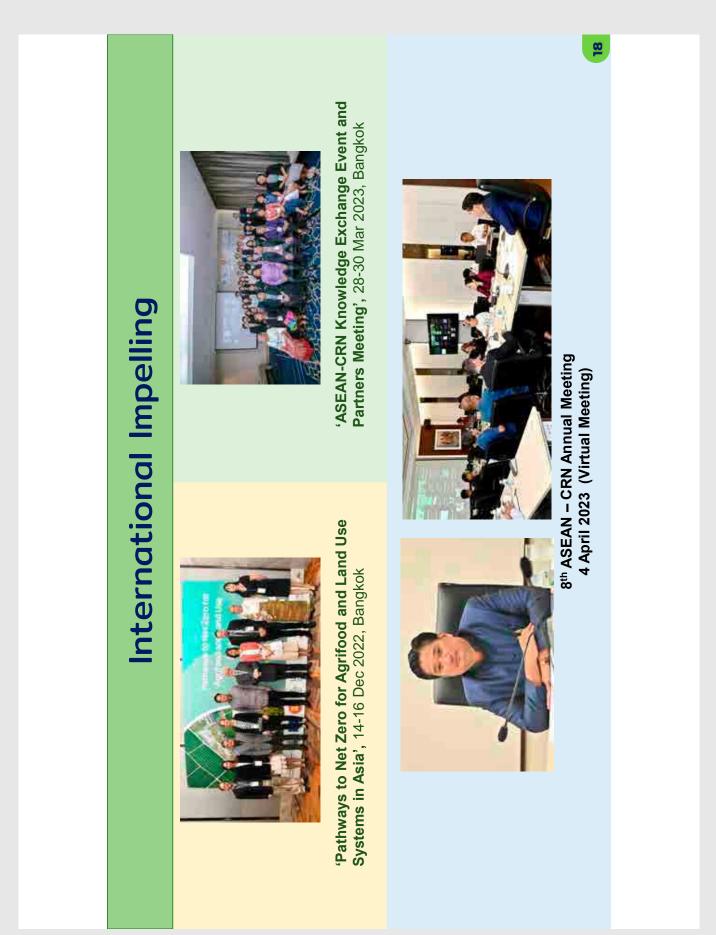

APPENDIX: THAILAND





2 Samples mechanism of Carbon Credit Thailand Voluntary Emission Reduction Program: T-VER China GHG Voluntary Emission Reduction Program Republic of Korea Offset Credit Mechanism Clean Development Mechanism : CDM Verified Carbon Standard: VCS American Carbon Registry **Climate Action Reserve** Spain FES-CO2 Program **Carbon Credit Project** J-Credit Scheme Gold Standard **Australia ERF** etc. etc. Level under UNFCCC International National Type of Market Mandatary market Voluntary market




APPENDIX: THAILAND

APPENDIX: THAILAND

	THE ASEAN Joint Work on Greenhouse Gas Reduction Emission Program on Crops or <mark>AGERcrops</mark>	1. Knowledge exchanges to <mark>develop guidelines</mark> in the agricultural sector to be recognized both in the national and international level.	2. Knowledge excahnges to <mark>develop standard methodology</mark> for baselining for GHG emission reduction in the agricultural sector for mainr economic	3. Knowledge exchanges to develop operational guidelines for obtaining carbon credit certification for crops in farming		
--	---	---	---	--	--	--

ABBREVIATION AND ACRONYMS

ADB	Asian Development Bank
AFOLU	Agriculture Forestry and Other Land Use
APO	Asian Productivity Organization
AWD	Alternate Wetting and Drying
AWS	Automatic Weather Station
BRRI	Bangladesh Rice Research Institute
ССС	Climate Change Commission, the Philippines
CDM	Clean Development Mechanism
COE	Center of Excellence
CRIDA	Central Research Institute for Dryland Agriculture, Hyderabad, India
CSA	Climate-Smart Agriculture
DOST	Department of Science and Technology, the Philippines
EC	Electrical Conductivity
ESP	Exchangeable Sodium Percentage
FAO	Food and Agriculture Organization
FYM	Farmyard Manure
GCF	The Green Climate Fund
GEF	Global Environment Facility
GHG	Greenhouse Gas
GIZ	Gesellschaft für Internationale Zusammenarbeit (international cooperation agency estab- lished by the German government)
GS	Gold Standard (international carbon credit certification organization)
IAF	International Accreditation Forum
IARI	Indian Agricultural Research Institute
ICAR	Indian Council of Agricultural Research
ICRISAT	International Crops Research Institute for the Semi-Arid Tropics
IMD	Indian Meteorological Department
INCAS	Indonesian National Carbon Accounting System
loT	Internet of Things
IRRI	International Rice Research Institute
JCM	Joint Crediting Mechanism
JIRCAS	Japan International Research Center for Agricultural Sciences
KAN	National Accreditation Committee (Komite Akreditasi Nasional), Indonesia

(Continued on next page)

(Continued from the previous page)

LVV GRK	Lembaga Validasi dan/atau Verifikasi Sektor Informasi Lingkungan Lingkup Gas Rumah Kaca, Indonesia (Validation and/or Verification Institution for the Greenhouse Gas Environ- mental Information Sector)
MLA	MultiLateral recognition Agreement
MOAC	The Ministry of Agriculture and Cooperatives, Thailand
MoEFCC	Ministry of Environment Forest and Climate Change, India
MRV	Monitoring Reporting and Verification
NARO	National Agriculture and Food Research Organization, Japan
NFMS	National Forest Monitoring System, Pakistan
NIEAS	NARO Institute for Agro-Environmental Sciences, Japan
OA	Organic Agriculture
ос	Organic Carbon
PAGASA	Philippine Atmospheric, Geophysical and Astronomical Service Administration
PRISM	Philippine Rice Information System
RBP	Result Based Payment
RDE	Research, Development and Extension
SARAI	Smarter Approaches to Reinvigorate Agriculture as an Industry, the Philippines
T-VER	Thailand Voluntary Emission Reduction program
UNDP	United Nations Development Programme
UNFCCC	United Nations Framework Convention on Climate Change
VCS	Verified Carbon Standard
VVB	Validation and Verification Body
WINDS	Weather Information Network and Data System

LIST OF TABLES

BACKGROUND

TABLE 1	Schedule of the first day of the International Conference on Climate-smart Agriculture
TABLE 2	Schedule of the second day of the International Conference on Climate-smart Agriculture 6
TABLE 3	Schedule of the third day of the International Conference on Climate-smart Agriculture

OUTLINE OF THE NEED AND READINESS SURVEY

TABLE 1	Size of major agricultural industries and GHG emissions in the eight	
	target member economies	9

SURVEY RESULTS

TABLE 1	Types and technologies practiced to reduce methane emissions from paddy soils	30
TABLE 2	Outlook of biochar for soil carbon sequestration, materials needed, and challenges	33
TABLE 3	Potential datasets for the Soil Carbon Sequestration Visualization Tool	35
TABLE 4	Availability of grid-based agro-meteorological data system in eight member economies	37
TABLE 5	Weather data, including timestep and period, available from weather stations	
	in eight member economies	38
TABLE 6	Key government agencies in CSA and their efforts in eight member economies	39
TABLE 7	Key private enterprises in CSA and their efforts in eight member economies	41
TABLE 8	Key universities or research institutes in CSA and their efforts in eight	
	member economies	43
TABLE 9	Key international organizations or NGOs, NPOs in CSA and their efforts	
	in eight member economies	46
TABLE 10	Bangladesh's top 2 priority CSA technologies, challenges, and possible	
	collaborations with the COE	49
TABLE 11	The ROC's top 2 priority CSA technologies, challenges, and possible	
	collaborations with the COE	49
TABLE 12	India's top 2 priority CSA technologies, challenges, and possible collaborations	
	with the COE	50
TABLE 13	Indonesia's top 2 priority CSA technologies, challenges, and possible	
	collaboration with the COE	50
TABLE 14	Pakistan's top 2 priority CSA technologies, challenges, and possible collaborations	
	with the COE	51
TABLE 15	The Philippines' top 2 priority CSA technologies, challenges, and possible	
	collaborations with the COE	51
TABLE 16	The ROK's top 2 priority CSA technologies, challenges, and possible collaborations	
	with the COE	52
TABLE 17	Thailand's top 2 priority CSA technologies, challenges, and possible collaborations	
	with the COE	52

LIST OF FIGURES

BACKGROU	JND	
FIGURE 1	Timeline of the major survey activities	3
OUTLINE O	F THE NEED AND READINESS SURVEY	
FIGURE 1	The first survey using Google Forms	.11
FIGURE 2	The secondary survey using Priority Sheet	
SURVEY RE	SULTS	
FIGURE 1	GHG emissions from agriculture in eight member economies	.15
FIGURE 2	Carbon credit trading mechanism and emission reduction program,	
	with types of registered agricultural projects	.22
FIGURE 3	Registration and type of agricultural projects in the CDM in eight member economies	.23
FIGURE 4	Registration and type of agricultural projects in the VCS by eight member economies	
FIGURE 5	Registration and type of agricultural projects in the GS by eight member economies	.25
FIGURE 6	Participation of member economies in Puro Earth	
FIGURE 7	Participation of eight member economies in the JCM and the Klik	.27
FIGURE 8	Availability of the MRV system and the VVB in eight member economies	
FIGURE 9	Importance of methodology for calculating and reporting the reduction of	
	methane emissions	.30
FIGURE 10	Availability of shared or approved methodology for calculating and reporting	
	the reduction in methane emissions	.31
FIGURE 11	Importance of the methodology for calculating and reporting carbon	
	stock in agricultural soils	.32
FIGURE 12	Importance of soil carbon sequestration visualization tool in eight member economies	
	Importance of grid-based agro-meteorological data system in eight member economies	

PILOT PROJECT IN 2024

FIGURE 1 Goal of a pilot project in 2024 in Thailand and planned activities of the COE on CSA......55

LIST OF CONTRIBUTORS

RESOURCE PERSONS AFFILIATED WITH THE COE ON CSA

CHIEF RESOURCE PERSON JAPAN Dr. Hasegawa Toshihiro Executive Scientist NARO, Institute for Agro-Environmental Sciences, (NIAES)

OTHER RESOURCE PERSONS AFFILIATED WITH THE COE ON CSA JAPAN

Dr. Kuwahata Kenya Senior Principal Scientist NARO Development Strategy Center (NDSC)

Tsurusaki Ichiro

Senior Principal Scientist NARO Development Strategy Center (NDSC)

Dr. Lurhathaiopath Puangkaew

Senior Scientist Central Region Agricultural Research Center (CARC), former NARO Development Strategy Center (NDSC)

Yasue Davaasuren Contract staff NARO Development Strategy Center (NDSC)

NATIONAL RESOURCE PERSON

BANGLADESH Dr. S.M. Mofijul Islam Senior Scientific Officer Soil Science Division Bangladesh Rice Research Institute (BRRI)

THE ROC

Dr. Szu-Meng Wu

Professor/Director Department of Life Science Chinese Culture University

INDIA

Dr. Niveta Jain Principal Scientist Division of Environment Science, Indian Agricultural Research Institute (ICAR)

INDONESIA

Dr. Sri Mulyani

Manager Division of Environment Science Agriculture Extension Center Ministry of Agriculture

260 APO MEMBERS' NEED AND READINESS FOR CLIMATE-SMART AGRICULTURE TECHNOLOGIES

PAKISTAN

Dr. Ghani Akbar Principal Scientific Officer Climate Energy and Water Research Institute (CEWRI), National Agricultural Research Centre (NARC), Pakistan Agricultural Research Council (PARC)

THE PHILIPPINES

Dr. Eduardo Jimmy P. Quilang Chief Science, Research Specialist Department of Agriculture, Philippine Rice Research Institute

THE ROK

Dr. Gil Won Kim Academic Research Professor Department of Applied Life Science, Gyeongsang National University

THAILAND

Dr. Theerawut Chutinanthakun Director Department of Agriculture, Ministry of Agriculture and Cooperatives

APO SECRETARIAT

Gozde Bosnali Program Officer Asian Productivity Organization

262 APO MEMBERS' NEED AND READINESS FOR CLIMATE-SMART AGRICULTURE TECHNOLOGIES

